PARTIAL REGULARITY FOR SOLUTIONS OF VARIATIONAL PROBLEMS

N. Fusco and J.E. Hutchinson

We report here on some recent results of the authors [FH1,2] within the context of a general discussion of problems in the calculus of variations. Some results (those in [FH2]) were not included in the delivered lecture.

We will consider minima of functionals \(F \) of the form

\[
(1) \quad u \mapsto F[u] = \int_{\Omega} F(x,u,Du)
\]

where \(\Omega \subset \mathbb{R}^n \), \(\Omega \) is open, and \(u: \Omega \to \mathbb{R}^N \). It will always be assumed that \(F \) is a Caratheodory function, i.e. \(F = F(x,u,p) \) is measurable in \(x \) for all \((u,p) \in \mathbb{R}^n \times \mathbb{R}^N \) and is continuous in \((u,p) \) for almost all \(x \in \Omega \). This ensures that \(F(x,u,Du) \) is measurable if \(u \) is measurable.

Here will be interested in the general case \(n \geq 1 \) and \(N \geq 1 \).

If \(N = 1 \), one can obtain much stronger results, for this we refer to [Gl], [G2], [GT], [LU], and [M].

There are two questions of fundamental interest. First, one wants to show (subject to various boundary conditions) the existence of minima of \(F \) in suitable function classes. Second, one is interested in the regularity (i.e. smoothness) properties of such minimisers.

The existence problem in a general sense is solved as a standard consequence of the following result by Acerbi and Fusco [AF].

* Lecture delivered by the second author.
Theorem 1. Suppose \(F = F(x,u,p) \) is a Caratheodory function. Assume that
\[
0 \leq F(x,u,p) \leq \lambda (1 + |u|^m + |p|^m)
\]
for some \(m \geq 1 \).

Then the functional \(F \) is weakly sequentially lower semicontinuous in \(H^{1,m}(\Omega;\mathbb{R}^N) \) iff \(F \) is quasiconvex.

We say that \(F \) is quasiconvex if linear functions are local minimisers of the "frozen" functionals corresponding to \(F \). More precisely, \(F \) is quasiconvex if for a.e. \(x_0 \in \Omega \) and for all \((u_0,p) \in \mathbb{R}^N \times \mathbb{R}^N \) one has
\[
\int_{\Omega} F(x_0,u_0,p) \leq \int_{\Omega} F(x_0,u_0,p + D\phi)
\]
for all \(\phi \in C^\infty_c(\mathbb{R}^N;\mathbb{R}^N) \).

For further discussion on the existence question we refer to the book [Gl] and the references therein.

We now discuss in somewhat more detail the regularity question for minima of \(F \).

Suppose \(F \) is a Caratheodory function, \(F = F(x,u,p) \) is \(C^2 \) in \(p \) for all \((x,u) \in \Omega \times \mathbb{R}^N \), and \(F \) satisfies the following conditions

1. \(|p|^2 - 1 \leq F(x,u,p) \leq a(1 + |p|^2) \),
2. \(|F_{pp}(x,u,p)| \leq b \)
3. \(F_{pp} \xi^i \xi^j = F \sum_{\alpha \beta} \xi^i \frac{\partial^2 F}{\partial \alpha^\beta} \xi^j \geq \lambda |\xi|^2 \)
4. \((1 + |p|^2)^{-1} F(x,u,p) \) is Hölder continuous in \((x,u) \)

uniformly in \(p \). In other words
\[
|F(x,u,p) - F(y,v,p)| \leq c(1 + |p|^2)\omega(|x-y|^2 + |u-v|^2)
\]
where $w(t) \leq t^{\sigma}$, $0 < \sigma \leq \frac{1}{2}$, and w is bounded, non-negative, concave, and increasing on $\{t \geq 0\}$.

Then we have the following result due to Giaquinta and Giusti [GG].

Theorem 2. Suppose F is as in (1) and (2). Suppose $u \in W^{1,2}_{\text{loc}}(\Omega; \mathbb{R}^N)$ is a local minimum for F (i.e. $F[u] \leq F[u + \phi]$ for all $\phi \in W^{1,2}_{\text{loc}}(\Omega; \mathbb{R}^N)$ with $\text{spt} \phi \subset \Omega$). Then there exists an open set $\Omega_0 \subset \Omega$ such that $u \in C^{1,\alpha}_{\text{loc}}(\Omega_0)$ for some $0 < \alpha < 1$ and such that $H^N(\Omega_0 \setminus \Omega_0) = 0$. Moreover,

\begin{equation}
\Omega_0 = \{x_0 \in \Omega : \limsup_{r \to 0} |(Du)_{x_0, r}| < \infty \text{ and } \inf_{r \to 0} \left\{ \int_{B(x_0, r)} |Du - (Du)_{x_0, r}|^2 \right\} = 0 \}. \tag{3}
\end{equation}

The theorem is proved by ultimately establishing a local decay estimate in Ω_0 of the form

\begin{equation}
\int_{B(x_0, r)} |Du - (Du)_{x_0, r}|^2 \leq cp^{2\alpha} \tag{4}
\end{equation}

as $p \to 0$, for some $\alpha > 0$. The key idea is to compare u with the minimum v in $B(x_0, r)$ of the frozen functional

$$w \mapsto \int_{B(x_0, r)} F(x_0, u, Dw)$$

with boundary condition

$$w \in u + W^{1,2}_{0}(B(x_0, r)).$$

In particular, one uses the fact that w, being a solution of a constant coefficient equation, satisfies a decay condition analogous to (4). Finally, one uses results of Companato [cf. [Gl, Chapter III]) to deduce the Hölder continuity of u in Ω_0 from (4).

It is an open question whether one can improve the dimension of
the singular set \(\Omega \sim \Omega_0 \). For particular classes of functionals this is indeed the case. On the other hand, one cannot generally expect everywhere regularity, as well-known counterexamples show. Again we refer to [Gl] for further discussion.

Aside from the question of the dimension of the singular set, there are some other gaps between the existence results which follow from Theorem 1 and the (partial) regularity results of Theorem 2.

In particular, the convexity condition of (2)(iii) implies quasic-convexity but not conversely; see [M, Chapter 4.4] and [Gl, Chapter IX.2]. However, it has recently been shown that if one replaces (2)(iii) by the requirement of strict quasic-convexity (see below), then one again has partial Hölder continuity of first derivatives of local minimisers.

One says that \(F \) is strictly quasiconvex if there exists \(\gamma > 0 \) such that for a.e. \(x_0 \in \Omega \), for all \((u_0, p) \in \mathbb{R}^n \times \mathbb{R}^{nN} \), and for all \(\phi \in C^1_0(\mathbb{R}^n; \mathbb{R}^N) \), one has

\[
(2)(iii)^* \quad \int_{\Omega} [F(x_0, u_0, p) + \gamma |D\phi|^2] \leq \int_{\Omega} F(x_0, u_0, p + D\phi).
\]

The following theorem was proved by Evans [E] in case \(F \) depends only on \(p \), and then later for general \(F \) by Fusco and Hutchinson [FH] and also by Giaquinta and Modica [GM].

Theorem 3 Under the same hypothesis as Theorem 2, but with (2)(iii) replaced by (2)(iii)*, we have that if \(u \in W^{1,2}(\Omega; \mathbb{R}^N) \) is a local minimum then \(u \in C^{1,\alpha}_{\text{loc}}(\Omega_0) \), for some \(0 < \alpha < 1 \) and some open \(\Omega_0 \) satisfying \(H^N(\Omega \sim \Omega_0) = 0 \).

The proof in [E] was by means of a "blow-up" argument. The key new point was to establish the following Caccioppoli type estimate assuming (2)(iii)* rather than (2)(iii):
provided \(B(x_0, r) \subset \Omega, \ a \in \mathbb{R}^N, \ \xi \in \mathbb{R}^{nN}, \) and \(|\xi| \leq L\).

One is naturally tempted to extend the result in [E] (where \(F \) depends only on \(p \)) to general functionals \(F \) (depending on \(x \) and \(u \), as well as \(p \)) as follows. Suppose \(u \) is a local minimiser of \(F \). Try to obtain an estimate in \(\Omega_0 \) of the form

\[
(5) \quad \int_{B(x_0, \rho)} |Du - (Du)_{x_0, \rho}|^2 \leq c_0 2^\alpha
\]

by first estimating \(\int_{B(x_0, r)} |Du - Dv|^2 \), where \(v \) minimises

\[
\int_{B(x_0, r)} F(x, (u)_{x_0, r}, Dv) \quad \text{subject to} \quad v \in u + W^{1,2}_0(B(x_0, r)),
\]

and then by combining this with the estimate (5), with \(u \) replaced by \(v \), which estimate is proved in [E].

However, one cannot readily estimate \(\int_{B(x_0, r)} |Du - Dv|^2 \) with \(v \) as above, precisely because \(F_{\alpha, \beta}^{\gamma, \delta}(x, u, p) \) satisfies a Legendre-Hadamard condition \(F_{\alpha, \beta}^{\gamma, \delta} \geq \gamma |\xi|^2 |\eta|^2 \) rather than a Legendre condition \(F_{\alpha, \beta}^{\gamma, \delta} \geq \gamma |\xi|^2 \).

This problem is solved in [FH1] by invoking a lemma of Ekeland (cf. [Gl, Theorem 2.3, p.257]), from which one can deduce the existence for any \(B(x_0, r) \subset \Omega \) of a function \(v \) such that

\[
\int_{B(x_0, r)} |Dv - Du|^2 \leq r^{2\alpha}
\]

and \(v \) minimises the problem

\[
f \mapsto \int_{B(x_0, r)} F(x_0, (u)_{x_0, r}, Df) + c r^\beta \left(\int_{B(x_0, r)} |Df - Dv|^2 \right)^{\frac{1}{2}}
\]

\[
f \in v + W^{1,2}_0(B(x_0, r); \mathbb{R}^N)
\]
for some small positive α, β. For further details see [FH1, §4].

The estimate (5) is obtained by means of a "blow-up" argument. Thus one supposes such an estimate is not true, blows up minimisers v_m obtained as above in appropriate balls $B(x_m, r_m)$, and obtains a contradiction by passing to a limit of the v_m.

As remarked above, the results in [E], [GG] and [FH], allow a weakening of the hypotheses of Theorem 2 by replacing convexity by a strengthened form of quasiconvexity. Another natural weakening of the hypotheses of Theorem 2 is to replace the quadratic growth of $F(x,u,p)$ in the variable p, by a growth rate of order $|p|^m$ for some $m > 2$.

Motivated by a functional given by

$$F(x,u,p) = a(x,u)(1 + |p|^m), \quad m > 2,$$

we consider the following structural conditions to replace (2) (where $m > 2$):

(2) (i)' $|p|^m - 1 \leq F(x,u,p) \leq a(1 + |p|^m)$

(ii)' $|F_{pp}(x,u,p)| \leq b(1 + |p|^{m-2})$

(iii)' $F_{pp} \xi^2 \geq \lambda (1 + |p|^{m-2}) \xi^2$

(iv)' $(1 + |p|^m)^{-1} F(x,u,p)$ is Hölder continuous on

(x,u) uniformly in p.

Then one can still prove $C^{1,\alpha}$ regularity (some $\alpha > 0$) on an open Ω_0 with $H_n(\Omega \sim \Omega_0) = 0$, as in Theorem 2. Moreover, one can even replace (2)(iii)' by (2)(iii)*

(2)(iii)* $\int_{\Omega} [F(x_0,u_0,p_0) + \gamma(|D\phi|^2 + |D\phi|^m)]$

$$\leq \int_{\Omega} F(x_0,u_0,p_0 + D\phi)$$

for a.e. $x_0 \in \Omega$, for all $(u,p) \in R^N \times R^n$, for all $\phi \in C^1_0(R^n ; R^N)$, and for some $\gamma > 0$; see [E], [FH1] and [GM].
However, if one considers a functional given by (1) and

(6) \[F(x,u,p) = a(x,u)|p|^m, \quad m \geq 2, \]

one sees that one should replace the structural condition (2)(iii)' by

(2)(iii)'' \[F_{pp} \xi \xi \geq \lambda |p|^{m-2} \xi \xi. \]

Although (partial) regularity results are not known for such a

general class of functionals, there are some results. Uhlenbeck [U]

has shown complete \(C^{1,\alpha} \) (some small \(\alpha > 0 \))

regularity for

minimisers (even stationary points) of \(\int |Du|^m \) in case \(m \geq 2 \). This

has been extended to \(m > 1 \) by Tolksdorff [Tl]. Moreover, examples

show that one cannot expect \(C^{1,\alpha} \) regularity for all \(0 < \alpha < 1 \)

(cf. [T2]).

In [FH2], partial regularity was shown for minimisers of

functionals corresponding to (6). More generally, we have the

following result.

Theorem 4 Suppose \(u \in W^{1,p}_{\text{loc}}(\Omega) \) is a local minimum for

(7) \[F[u] = \int_{\Omega} [G^{\alpha\beta}(x,u)g_{ij}(x,u) Du^i D_{\beta} u^j]^{p/2} \]

where \(p \geq 2 \). Suppose \(G \) and \(g \) satisfy

\[|\xi|^2 \leq G\xi \xi \leq M|\xi|^2 \quad \text{for all } \xi \in \mathbb{R}^n, \]

\[|\eta|^2 \leq G\eta \eta \leq M|\eta|^2 \quad \text{for all } \eta \in \mathbb{R}^n, \]

and \(G, g \) are \(C^{0,\sigma} \) on \(\Omega \times \mathbb{R}^n \).

Then \(u \in C^{1,\alpha}_{\text{loc}}(\Omega_0) \) for some \(0 < \alpha < 1 \) and some \(\Omega_0 \subset \Omega \), where

\(H^{n-q}(\Omega_0) = 0 \) for some \(q > p \).

Moreover

(8) \[\Omega_0 = \{ x_0 \in \Omega : \limsup_{r \to 0} |(u)_{x_0,r}| < \infty \} \]

and \(\liminf_{r \to 0} r^{p-n} \int_{|Du|^p = 0} \). \(\Box \)
The main idea in the proof is to first obtain an appropriate decay estimate for minima of functionals of the form

\[u \mapsto \int \left[G^{\alpha \beta} g_{i j} \partial_\alpha u \partial_\beta u^i \right]^{p/2}, \]

where \([G^{\alpha \beta}] \), \([g_{i j}] \) are constant inner products on \(\mathbb{R}^N \) and \(\mathbb{R}^n \) respectively.

By a change of coordinates, one reduces the problem to considering functionals of the form

\[u \mapsto \int |Du|^p, \]

where \(|Du| = \left(\partial_\alpha u \partial_\beta u^i \right)^{1/2} \). Indeed, we work more generally with solutions of the Euler Lagrange equation

\[\int |Du|^{p-2} Du D\phi = 0 \]

for all \(\phi \in W^{1,p}_0(\Omega; \mathbb{R}^N) \).

One might hope for an estimate on solutions \(u \) of (9) which has the form

\[\int_{B(x_0, \tau R)} |Du - (Du)_{x_0, \tau R}|^p \leq c\tau^{p\alpha} \int_{B(x_0, R)} |Du - (Du)_{x_0, R}|^p \]

for all \(B(x_0, R) \subset \Omega \) and \(0 < \tau < 1 \). However, it is not clear that such an estimate is true. What is done instead in [FH2] is to obtain an estimate of the form

\[\Phi(x_0, \tau R) \leq c\tau^\alpha \psi(x_0, R) \quad \text{for } 0 < \tau < 1, \]

where one defines

\[\Phi(x_0, \rho) = \int_{B(x_0, \rho)} |Du - (Du)_{x_0, \rho}|^p + |(Du)_{x_0, \rho}|^{p-2} \int_{B(x_0, \rho)} |Du - (Du)_{x_0, \rho}|^2, \]

whenever \(B(x_0, \rho) \subset \Omega \).

The proof of (10) uses earlier estimates of Uhlenbeck [U].

One finally proves Theorem 4 by comparing a minimum of (7) with a
minimum of the problem

$$
\left\{
\begin{array}{l}
\nu \mapsto \int_{B(x_0, R)} [G^{\alpha \beta}(x_0', (u)v(x_0', R) g_{ij}(x_0', (u)v(x_0', R) D^i \nu D^j \nu]^{p/2} \\
\nu \in u + W^{1,p}_0(B(x_0, R), \mathbb{R}^N),
\end{array}
\right.
$$

where $B(x_0, 2R) \subset \Omega$. One combines an estimate of the type (10) (with u there replaced by v) together with an estimate of the form

$$
\int_{B(x_0, R)} |Du - Dv|^p \leq c^*_R \varepsilon
$$

for some small $\varepsilon > 0$, where here c^* depends on $\int_{B(x_0, 2R)} |Du|^p$ and $\int_{B(x_0, R)} u$.

The resulting estimate which one obtains is

$$
\phi(x_0, TR) \leq c^{**}(TR)^\alpha
$$

for some small $\alpha > 0$ and all sufficiently small T, provided $B(x_0, 2R) \subset \Omega_0$, where Ω_0 is defined in (8). Here c^{**} has the same dependencies as c^*. By the usual Comparatio estimates it follows $u \in C^{1,\alpha}_{\text{loc}}(\Omega_0)$.

Finally, we remark that if in (7) the matrix G does not depend on u, and u is a locally bounded minimum, then the dimension of the singular set is at most $n - [q] - 1$ for some $q > p$ (q does not depend on u), where $[q]$ is the integer part of q. If $n \leq q + 1$, then u can have at most isolated singularities. The proof is a modification of a similar argument in [GG].
REFERENCES

[FH1] N. Fusco J.E. Hutchinson, $c^{1,\alpha}$ partial regularity of functions minimizing quasiconvex integrals Manuscripta Mathematica 54 (1985), 121-143.

