1. ADJOINT CONSIDERATIONS

A useful way of studying a complex Banach space X and a bounded linear operator T on X is to consider the **adjoint space**

$$X^* = \{ x^* : X \to \mathbb{C}, x^* \text{ is conjugate linear and continuous} \}$$

of X and the **adjoint operator** T^* associated with T. In this section we develop these concepts. This is done in such a way as to make the well-known Hilbert space situation a particular case of our development.

For $x^* \in X^*$ and $x \in X$, we denote the value of x^* at x by

$$\langle x^*, x \rangle .$$

Then we easily see that for x^* and y^* in X^*, x and y in X and $t \in \mathbb{C}$,

\[
\begin{align*}
\langle x^*, x+y \rangle &= \langle x^*, x \rangle + \langle x^*, y \rangle , \\
\langle x^*, tx \rangle &= t \langle x^*, x \rangle , \\
\langle x^* + y^*, x \rangle &= \langle x^*, x \rangle + \langle y^*, x \rangle , \\
\langle tx^*, x \rangle &= t \langle x^*, x \rangle .
\end{align*}
\]

We say that \langle , \rangle is the **scalar product** on $X^* \times X$. For the sake of convenience, we introduce the following notation:

\[
\langle x, x^* \rangle = \langle x^*, x \rangle , \text{ } x \text{ in } X \text{ and } x^* \text{ in } X^* .
\]

For x^* in X^*, let

$$\| x^* \| = \sup \{ | \langle x^*, x \rangle | : x \in X, \| x \| \leq 1 \} .$$
This defines a norm on X^* and makes it a Banach space. We have the fundamental inequality:

(1.3) $|<x^*, x>| = |<x, x^*>| \leq \|x^*\| \|x\|$, x^* in X^* and x in X.

Many books on functional analysis consider the dual space $X' = \{x' : X \to \mathbb{C} : x'$ is linear and continuous\}$ of X instead of the adjoint space X^*. We prefer the framework of the adjoint space because in case X is a Hilbert space, X^* can be linearly identified with X itself, as we shall see later. In any event, we remark that $x' \in X'$ iff its complex conjugate $\overline{x'} \in X^*$. This allows us to transfer many well-known results about X' to X^*, such as the following basic extension result.

Proposition 1.1 (Hahn-Banach theorem) Let Y be a subspace of X and $y^* \in Y^*$. Then there is $x^* \in X^*$ such that $x^*|_Y = y^*$ and $\|x^*\| = \|y^*\|$.

Proof Since $\overline{y^*} \in Y'$, there is $x' \in X'$ with $x'|_Y = \overline{y^*}$ and $\|x'\| = \|\overline{y^*}\| = \|y^*\|$, by the Hahn-Banach extension theorem ([L], 7.6). The proof is complete if we let $x^* = x^\top$. //

Corollary 1.2 If $0 \neq a \in X$, then there is $x^* \in X^*$ with $<x^*, a> = \|a\|$ and $\|x^*\| = 1$. More generally, if Y is a closed subspace of X and $a \in Y$, then there is $x^* \in X^*$ such that $<x^*, a> = \text{dist}(a, Y)$, $\|x^*\| = 1$ and $x^*|_Y \equiv 0$.
Proof The first result follows by letting $Y = \text{span}(a)$ and

$$\langle y^*, ta \rangle = t\|a\|$$

in Proposition 1.1. The second part can be proved by considering the quotient space X / Y with the quotient norm

$$\|x + y\| = \inf \{ \|x + y\| : y \in Y \} = \text{dist}(x, Y)$$

for $x \in X$, and then using the first part. //

The above result is useful in expressing the duality between X and X^*: Just as $\langle x^*, x \rangle = 0$ for all $x \in X$ implies, by definition, that $x^* = 0$, we see that $\langle x, x^* \rangle = 0$ for all $x^* \in X^*$ implies, by the above corollary, that $x = 0$. Moreover, just as we have by definition, for $x^* \in X^*$,

$$\|x^*\| = \sup \{ |\langle x^*, x \rangle| : x \in X, \|x\| \leq 1 \},$$

we see by (1.3) and the above corollary that for $x \in X$,

$$\|x\| = \sup \{ |\langle x, x^* \rangle| : x^* \in X^*, \|x^*\| \leq 1 \}.$$

For a subset E of X, we define the annihilator E^\perp of E to be the following subset of X^*:

$$E^\perp = \{ x^* \in X^* : \langle x^*, x \rangle = 0 \text{ for all } x \in E \}.$$

It is easy to see that E^\perp is, in fact, a closed subspace of X^*. The concept of an annihilator will be used later in relating the range of a bounded linear map to the zero space of its adjoint.

Let X and Y be complex Banach spaces, and let $\text{BL}(X, Y)$ denote the set of all bounded linear maps from X to Y. For $T \in \text{BL}(X)$, the operator norm of T is defined as follows:

$$\|T\| = \sup \{ \|Tx\| : x \in X, \|x\| \leq 1 \}.$$
Two important subspaces related to T are the null space of T:

$$Z(T) = \{ x \in X : Tx = 0 \},$$

and the range of T:

$$R(T) = \{ y \in Y : y = Tx \text{ for some } x \in X \}.$$

For $T \in \text{BL}(X,Y)$ and $y^* \in Y^*$, we see that $y^* T \in X^*$. We denote this element of X^* by $T y^*$. Thus, the following diagram commutes:

$$\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow{T^*} & & \downarrow{y^*} \\
Y^* & \xleftarrow{y} & \text{C}
\end{array}$$

The adjoint T^* of T is the map from Y^* to X^* defined by

$$\langle T y^*, x \rangle = \langle y^*, Tx \rangle \text{ for } y^* \in Y^*, x \in X.$$

Taking conjugates, and using the notation (1.2), we have

$$\langle Tx, y^* \rangle = \langle x, T^* y^* \rangle \text{ for } x \in X, y^* \in Y^*.$$

Proposition 1.3
(a) For $T \in \text{BL}(X,Y)$, we have $T^* \in \text{BL}(Y^*,X^*)$ and $\|T^*\| = \|T\|.

(b) For $T, S \in \text{BL}(X,Y)$ and $t \in \mathbb{C}$, we have

$$(T + S)^* = T^* + S^* \text{ and } (tT)^* = \overline{t} T^*.$$

Thus, $T \mapsto T^*$ is a conjugate linear isometry of $\text{BL}(X,Y)$ into $\text{BL}(Y^*,X^*)$.

(c) The null space of T^* equals the annihilator of the range of T:

$$Z(T^*) = R(T)^\perp.$$
(d) Let \(Z \) be a complex Banach space, and \(U \in \text{BL}(Y,Z) \). Then
\[
(UT)^* = T^*U^*.
\]

Proof (a) \(T^* \) is clearly linear. Also,
\[
\|T^*\| = \sup\{\|T^* y^*\| : y^* \in Y^*, \|y^*\| \leq 1\}
= \sup\{|\langle y^*, Tx \rangle| : y^* \in Y^*, \|y^*\| \leq 1, x \in X, \|x\| \leq 1\}
= \sup\{\|Tx\| : x \in X, \|x\| \leq 1\}
= \|T\|.
\]

(b) The proof of this part is easy. For example, one quickly shows that for every \(y^* \in Y^* \), and \(x \in X \),
\[
\langle (T+S)^* y^*, x \rangle = \langle (T^*+S^*) y^*, x \rangle.
\]

(c) We have \(y^* \in Z(T^*) \) if and only if \(\langle y^*, Tx \rangle = \langle T^* y^*, x \rangle = 0 \) for every \(x \in X \) if and only if \(y^* \in \text{R}(T)^\perp \).

(d) For \(z^* \in Z^* \) and \(x \in X \), we have
\[
\langle (UT)^* z^*, x \rangle = \langle z^*, UTx \rangle = \langle U^* z^*, Tx \rangle = \langle T^* U^* z^*, x \rangle.
\]

Hence the result. //

Special Case of a Hilbert Space.

Let \(X \) be a Hilbert space with the inner product \(\langle \cdot, \cdot \rangle_X \), and let \(\|x\| = (\langle x, x \rangle_X)^{1/2} \) for \(x \in X \). Given \(x^* \in X^* \), define \(f : X \rightarrow \mathbb{C} \) by
\[
f(x) = \langle x, x^* \rangle, \quad x \in X.
\]

Then \(f \) is a continuous linear functional on \(X \) of norm \(\|x^*\| \). The Riesz representation theorem ([L], 24.2) shows that there is unique \(y \in X \) such that
\[\langle x, x^* \rangle = f(x) = \langle x, y \rangle_X \]

for all \(x \in X \); moreover, \(\|y\| = \|f\| = \|x^*\| \). The correspondence \(x^* \mapsto y \) of \(X^* \) with \(X \) is, thus, a linear isometry onto. Whenever \(X \) is a Hilbert space, we shall, from now on, identify \(X^* \) with \(X \) via the above correspondence, and drop the suffix \(X \) in the inner product notation \(\langle \cdot, \cdot \rangle_X \) without any ambiguity.

Let \(A : X \to X \) be a linear map. The generalized polarization identity

\[
4\langle Ax, y \rangle = \langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle + i\langle A(x+iy), x+iy \rangle - i\langle A(x-iy), x-iy \rangle ,
\]

where \(x \) and \(y \) belong to \(X \), is often useful.

For a subset \(E \) of the Hilbert space \(X \), the annihilator \(E^\perp = \{ y \in X : \langle x, y \rangle = 0 \text{ for all } x \in E \} \) consists of all elements of \(X \) which are orthogonal to \(E \). The double annihilator \(E^{\perp \perp} \) has a nice characterization: If \(F \) denotes the closure of the linear span of \(E \), then

\[
E^{\perp \perp} = F .
\]

It is easy to check that \(F \) is contained in \(E^{\perp \perp} \). On the other hand, suppose for a moment that there is some \(a \) in \(E^{\perp \perp} \), but not in \(F \). Then by Corollary 1.2, there is \(x^* \in X^* \) such that \(x^* \big|_F = 0 \) but \(\langle x^*, a \rangle = 1 \), i.e., there is \(y \in X \) such that \(\langle z, y \rangle = 0 \) for all \(z \in F \), but \(\langle a, y \rangle = 1 \). This is impossible since \(y \in E^\perp \) and \(a \in E^{\perp \perp} \) so that \(\langle a, y \rangle = 0 \).
For $T \in BL(X)$, the adjoint operator $T^* \in BL(X)$ is characterized by

$$\langle Tx, y \rangle = \langle x, T^* y \rangle \text{ for all } x \text{ and } y \text{ in } X.$$

In addition to $Z(T^*) = R(T)^{\perp}$, as noted in Proposition 1.3(c), we also have

$$Z(T) = R(T^*)^{\perp},$$

when X is a Hilbert space. This follows since $x \in Z(T)$ if and only if $0 = \langle Tx, y \rangle = \langle x, T^* y \rangle$ for all $y \in X$ if and only if $x \in R(T^*)^{\perp}$. Thus, T (resp., T^*) is one to one if and only if the range of T^* (resp., T) is dense in X.

The norms of the operators T and T^* are related by the B^*-algebra condition

$$\|T^* T\| \leq \|T\| \|T^*\| \leq \|T\|^2.$$

This can be proved as follows.

$$\|T^* T\| \leq \|T^*\| \|T\| \leq \|T\|^2 = \sup\{\|Tx\|^2 : x \in X, \|x\| \leq 1\} = \sup\{\langle Tx, Tx \rangle : x \in X, \|x\| \leq 1\} \leq \|T^* T\|.$$

If T^* commutes with T, i.e., $T^* T = TT^*$, we say that T is normal; and if $T^* = T$, we say that T is self-adjoint. It is clear that every self-adjoint operator is normal.
For $x \in X$ and $T \in \text{BL}(X)$, we have

$$
\|Tx\|^2 - \|T^*x\|^2 = \langle Tx, Tx \rangle - \langle T^*x, T^*x \rangle
= \langle (T^*T - TT^*)x, x \rangle.
$$

Hence it follows by using the generalized polarization identity that

\begin{equation}
(1.8) \quad T \in \text{BL}(X) \text{ is normal if and only if } \|Tx\| = \|T^*x\|
\text{ for all } x \in X.
\end{equation}

For a self-adjoint operator T, we have

$$
\langle Tx, x \rangle = \langle x, T^*x \rangle
= \langle x, Tx \rangle
= \langle Tx, x \rangle
$$

for all $x \in X$, so that $\langle Tx, x \rangle$ is real. Conversely, let $\langle Tx, x \rangle$ be real for all $x \in X$. Then for $x, y \in X$, the generalized polarization identity shows that,

$$
4\langle Tx, y \rangle = \langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle
+ i\langle T(x+iy), x+iy \rangle - i\langle T(x-iy), x-iy \rangle
= \langle x+y, T(x+y) \rangle - \langle x-y, T(x-y) \rangle
+ i\langle x+iy, T(x+iy) \rangle - i\langle x-iy, T(x-iy) \rangle
\quad (\text{since } \langle Tz, z \rangle \text{ is real for all } z \in X)
= \langle T^*(x+y), x+y \rangle - \langle T^*(x-y), x-y \rangle
+ i\langle T^*(x+iy), x+iy \rangle - i\langle T^*(x-iy), x-iy \rangle
= 4\langle T^*x, y \rangle.
$$

Hence $T^* = T$, i.e., T is self-adjoint. Thus,

\begin{equation}
(1.9) \quad T \in \text{BL}(X) \text{ is self-adjoint if and only if } \langle Tx, x \rangle
\text{ is real for all } x \in X.
\end{equation}
Examples of adjoint spaces and operators

(i) Let X be an n dimensional space with $1 \leq n < \infty$, and let x_1, \ldots, x_n be an ordered basis for X. Then for x in X, we have

\[x = \sum_{j=1}^{n} t_j(x) x_j, \]

where $t_j(x) \in \mathbb{C}$, $j = 1, \ldots, n$, is uniquely determined by x. If we let

\[\langle x_j^*, x \rangle = t_j(x), \quad j = 1, \ldots, n, \]

then x_1^*, \ldots, x_n^* is an ordered basis for X^* and we have

\[\langle x_j^*, x_i \rangle = \delta_{i,j}, \quad i, j = 1, \ldots, n, \]

where $\delta_{i,j}$ is the Kronecker symbol: $\delta_{i,j}$ equals 0 if $i \neq j$, and equals 1 if $i = j$. This basis is called the basis of X^* which is adjoint to the given basis x_1, \ldots, x_n of X.

For x in X and x^* in X^*, we have

\[x = \sum_{j=1}^{n} \langle x, x_j^* \rangle x_j + \cdots + \langle x, x_n^* \rangle x_n, \]

(1.9)

\[x^* = \sum_{j=1}^{n} \langle x^*, x_j \rangle x_j^* + \cdots + \langle x^*, x_n \rangle x_n^*, \]

\[\langle x^*, x \rangle = \sum_{j=1}^{n} \langle x^*, x_j \rangle \langle x_j^*, x \rangle + \cdots + \langle x^*, x_n \rangle \langle x_n^*, x \rangle. \]

Let, now, Y be an m-dimensional space with $1 \leq m < \infty$. Let y_1, \ldots, y_m be an ordered basis for Y, and y_1^*, \ldots, y_m^* be the corresponding adjoint basis for Y^*. If $T : X \rightarrow Y$ is linear, and we let

\[t_{i,j} = \langle Ty_j^*, y_i \rangle, \quad i, j = 1, \ldots, n, \]
then we see that for \(j = 1, \ldots, n \),

\[
T_x^j = \langle T_x^j, y_1^* \rangle y_1 + \ldots + \langle T_x^j, y_m^* \rangle y_m
\]

\[
= \sum_{i=1}^{m} t_{i,j} y_i^* .
\]

Thus, for \(x \) in \(X \),

\[
T_x = \sum_{j=1}^{n} \langle x, x_j^* \rangle T_x^j
\]

\[
= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} t_{i,j} \langle x, x_j^* \rangle \right) y_i^* .
\]

The operator \(T \) can be represented by the \(m \times n \) matrix \(A = [t_{i,j}] \), with respect to the bases \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_m \) of \(X \) and \(Y \) respectively, in the following sense:

\[
\begin{pmatrix}
 t_{1,1} & \cdots & t_{1,n} \\
 \vdots & \ddots & \vdots \\
 t_{m,1} & \cdots & t_{m,n}
\end{pmatrix}
\begin{pmatrix}
 \langle x, x_1^* \rangle \\
 \vdots \\
 \langle x, x_n^* \rangle
\end{pmatrix}
=
\begin{pmatrix}
 \langle T_x, y_1^* \rangle \\
 \vdots \\
 \langle T_x, y_m^* \rangle
\end{pmatrix}.
\]

Now consider the adjoint operator \(T^* : Y^* \rightarrow X^* \). It can be easily seen that \((X^*)^* \) can be identified with \(X \), and we can regard \(x_1, \ldots, x_n \) as the basis of \((X^*)^* \) which is adjoint to the basis \(x_1^*, \ldots, x_n^* \) of \(X^* \). Since

\[
\langle T_x^*, x_i \rangle = \langle y_j, T_x^j \rangle = \langle T_x, y_j^* \rangle = \overline{t_{j,i}},
\]

for \(i = 1, \ldots, m \) and \(j = 1, \ldots, n \), we see that the adjoint operator \(T^* \) is represented by the conjugate transpose matrix \(A^H = [\overline{t_{j,i}}] \), with respect to the bases \(y_1^*, \ldots, y_m^* \) and \(x_1^*, \ldots, x_n^* \) of \(Y^* \) and \(X^* \) respectively.
A commonly occurring situation is when $X = \mathbb{C}^n$, the set of all column vectors with n entries of complex numbers. Let $e_j^{(n)}$ denote the column vector whose i-th entry $e_j^{(n)}(i)$ equals $\delta_{i,j}$. To save space, let $x = \begin{bmatrix} x(1) \\ \vdots \\ x(n) \end{bmatrix}$ in \mathbb{C}^n be denoted by $[x(1), \ldots, x(n)]^t$, where the superscript t denotes the transpose. Note that x^H denotes the conjugate transpose of x, i.e., the row vector $[\overline{x(1)}, \ldots, \overline{x(n)}]$.

For $x \in \mathbb{C}^n$, we have

$$x = \sum_{j=1}^{n} x(j)e_j^{(n)}.$$

so that $e_1^{(n)}, \ldots, e_n^{(n)}$ is a basis of X, the so-called standard basis. If $x^* \in X^*$ and we let

$$\langle x^*, e_j^{(n)} \rangle = y(j), \quad j = 1, \ldots, n,$$

then

$$\langle x^*, x \rangle = \sum_{j=1}^{n} \overline{x(j)} y(j).$$

so that X^* can be identified again with the set \mathbb{C}^n of column vectors $[y(1), \ldots, y(n)]^t$, and we can consider $x_j^* = e_j^{(n)}$, $j = 1, \ldots, n$, as the corresponding adjoint basis. Then we have for all $x \in X$ and $y \in X^*$,

$$\langle y, x \rangle = \sum_{j=1}^{n} \overline{x(j)} y(j) = x^H y.$$

If $Y = \mathbb{C}^m$, and $T : \mathbb{C}^n \rightarrow \mathbb{C}^m$ is linear, then

$$t_{i,j} = \langle Te_j^{(n)}, e_i^{(m)} \rangle = (e_i^{(m)})^H T e_j^{(n)}$$

for $i = 1, \ldots, m$ and $j = 1, \ldots, n$.
is simply the i-th entry of the m-vector $TE_j^{(n)}$ for $j = 1, \ldots, n$ and $i = 1, \ldots, m$. Thus, Tx is given by the product of the $m \times n$ matrix $[<TE_j^{(n)}, e_i^{(m)}>]$ with the $n \times 1$ matrix $x \in \ell^n$. Conversely, an $m \times n$ matrix defines a linear map from ℓ^n to ℓ^m in a natural way. We shall denote an operator and the corresponding matrix by the same letter T.

The i-th entry of the n-vector $T^*e_j^{(m)}$ is

$$<T^*e_j^{(m)}, e_i^{(n)}> = <e_i^{(n)}, Te_j^{(m)}> = \tau_{i,j}$$

for $i = 1, \ldots, n$ and $j = 1, \ldots, m$. Thus, the adjoint T^* of an operator T is given by the conjugate transpose T^H of the corresponding matrix T.

(ii) Let $X = \ell^p$, $1 \leq p < \infty$, the space of all p-summable sequences of complex numbers, with the norm

$$\|x(1), x(2), \ldots \| = \left[\sum_{j=1}^{\infty} |x(j)|^p \right]^{1/p},$$

for $x = [x(1), x(2), \ldots]_t$ in X. Then X^* can be identified with ℓ^q, where $1/p + 1/q = 1$, via the map $x^* \mapsto y$ with

$$<x^*, e_j> = y(j),$$

where $e_j = [0, \ldots, 0, 1, 0, \ldots]^t$, the entry 1 occurring only in the j-th place ([L], 13.4(b)). Now, for $x = \sum_{j=1}^{\infty} x(j)e_j$ in X we have

$$<x^*, x> = \sum_{j=1}^{\infty} \overline{x(j)} y(j).$$

Let $T \in BL(\ell^p, \ell^q)$, and
Te_j = [t_1, j, t_2, j, \ldots]_t^t.

so that \langle Te_j, e_i \rangle = t_{i,j}. Since

$$Tx = \sum_{j=1}^{\infty} x(j)Te_j,$$

we have for \(i = 1,2,\ldots, \)

$$Tx(i) = \sum_{j=1}^{\infty} x(j)t_{i,j}.$$

Now, \(T^* \in BL(e^p, e^q), \) and

$$T^*e_j = [\bar{t}_{j,1}, \bar{t}_{j,2}, \ldots]_t^t,$$

since \(\langle T^*e_j, e_i \rangle = \langle e_j, Te_i \rangle = \bar{t}_{j,i}. \) We note that \(T \) and \(T^* \) are thus given by the infinite matrices \([t_{i,j}]\) and \([\bar{t}_{j,i}]\), \(i,j = 1,2,\ldots, \) respectively.

(iii) Let \(X = L^p([a,b]), \) \(1 \leq p < \infty, \) the set of all \(p \)-integrable complex-valued functions on \([a,b]\) with the norm

$$\|x\|_p = \left(\int_a^b |x(t)|^p dm(t) \right)^{1/p},$$

where \(m \) is the Lebesgue measure. Then \(X^* \) can be identified with \(L^q([a,b]) \), where \(1/p + 1/q = 1 \), since for every \(x^* \in X^* \), there is a unique \(y \in L^q([a,b]) \) such that

$$\langle x^*, x \rangle = \int_a^b x(t)y(t)dm(t), \quad x \in X.$$

(See [L], 14.3.)
Consider, for simplicity, \(p = 2 = q \), and let \(T \in \text{BL}(L^2([a,b])) \) be the integral operator

\[
T(x)(s) = \int_a^b k(s,t)x(t)\,dm(t), \quad x \in X,
\]

where \(\int_a^b \int_a^b |k(s,t)|^2 \,dm(s)\,dm(t) < \infty \). Then for all \(x,y \in X \), we have

\[
\langle T^*y, x \rangle = \langle y, Tx \rangle
\]

\[
= \int_a^b \overline{T(x)(t)y(t)}\,dm(t)
\]

\[
= \int_a^b \left(\int_a^b k(t,s) \overline{x(s)}\,dm(s) \right) y(t)\,dm(t)
\]

\[
= \int_a^b \overline{x(s)} \left(\int_a^b k(t,s) y(t)\,dm(t) \right)\,dm(s)
\]

so that for \(a \leq s \leq b \),

\[
T^*(s) = \int_a^b \overline{k(t,s)} y(t)\,dm(t).
\]

Thus, \(T^* \) is again an integral operator with kernel \(k^*(s,t) = \overline{k(t,s)} \).

(iv) Let \(X = C([a,b]) \), the set of all complex-valued continuous functions on the closed and bounded interval \([a,b]\) of the real line, with the supremum norm. Then for every \(x^* \in X^* \), there is a unique normalized function of bounded variation, say \(y \), such that

\[
\langle x^*, x \rangle = \int_a^b x(t)\,dy(t) \quad \text{for all} \quad x \in X.
\]

(See [L], 14.6).

Let \(T \) be an integral operator as in (iii) above, with \(k(s,t) \) continuous for \(s,t \in [a,b] \). Then for every \(x \in C([a,b]) \) and every normalized function \(y \) of bounded variation on \([a,b]\), we have, as earlier,
\[\langle T^* y, x \rangle = \int_a^b x(s) \left(\int_a^b k(t,s) dy(t) \right) ds \]
\[= \int_a^b x(s) dz(s) , \]

where
\[z(s) = \int_a^s \left(\int_a^b k(t,u) dy(t) \right) du , \quad a \leq s \leq b . \]

Since this is true for every \(x \in X \), we see that for \(a \leq s \leq b \),
\[T^* y(s) = z(s) = \int_a^s \left(\int_a^b k(t,u) du \right) dy(t) \]

Problems

1.1 Let \(Y \) be a closed subspace of \(X \), and \(x_0 \in X \) but \(x_0 \notin Y \). Then there is \(x^* \in X^* \) such that
\[\langle x^*, y \rangle = 0 \quad \text{for all} \quad y \in Y , \quad \langle x^*, x_0 \rangle = 1 , \quad \text{and} \quad \| x^* \| = 1 / \text{dist}(x_0, Y) . \]

1.2 For fixed \(x \in X \), define \(f_x : X^* \rightarrow \mathbb{C} \) by \(f_x(x^*) = \langle x, x^* \rangle \). Then \(f_x \in X^{**} \). Identify \(x \) with \(f_x \), so that \(X \subseteq X^{**} \). Let \(E \subseteq X \). Then
\[E^{\perp} \cap X = \text{the closure of span}(E) \text{ in } X . \]

If \(T \in \mathcal{BL}(X,Y) \), then
\[Z(T) = X \cap R(T^*)^\perp , \]
\[(1.10) \]
the closure of \(R(T) \) in \(X = X \cap Z(T^*)^\perp . \)
If $R(T)$ is closed, then

$$(1.11) \quad R(T^*) = Z(T)^\perp.$$

In general, does the closure of $R(T^*)$ in X^* equal $Z(T)^\perp$?

1.3 Let X and Y be Hilbert spaces and $T \in BL(X,Y)$. Then the closure of $R(T)$ (resp., $R(T^*)$) equals $Z(T)^\perp$ (resp., $Z(T^*)^\perp$).

Also, $Z(T^*T) = Z(T)$ and the closure of $R(T^*T)$ equals the closure of $R(T^*)$. If $R(T)$ is closed, then $R(T^*)$ is closed and $R(T^*T) = R(T^*) = Z(T)^\perp$. Further, T^*T is invertible if and only if T is one to one and $R(T)$ is closed. (Hint: $R(T)$ is closed if and only if $v(T) = \inf \{ \|Tx\| : x \in Z(T)^\perp, \|x\| = 1 \} > 0$)

1.4 If $T \in BL(X,Y)$ is invertible, then $T^* \in BL(Y^*,X^*)$ is invertible and $(T^{-1})^* = (T^*)^{-1}$. The converse also holds. (See (8.1).)

1.5 Let $X = L^2([a,b])$ or $C([a,b])$, and

$$T^*x(s) = \int_a^b e^{st}x(t)dm(t), \ x \in X, \ a \leq s \leq b.$$

If $X = L^2([a,b])$, then $T^* = T$, while if $X = C([a,b])$, then

$$T^*y(s) = \int_a^b \frac{e^{ts}-e^{ta}}{t} dy(t)$$

for every normalized function y of bounded variation on $[a,b]$; in particular, if $y \in C^1([a,b])$, then

$$T^*y(s) = \int_a^b \frac{e^{ts}-e^{ta}}{t} y'(t)dt.$$