20. COMPUTER PROGRAMS

In this section we give a typical computer program which implements one of the algorithms of Section 17 with the help of the discretization procedure stated in Section 18. The program is written in FORTRAN 77. We also show how this program can be modified to cover other cases.

We begin by documenting the program.

PROGRAM ITEIG

* PURPOSE *
COMPUTATION OF ITERATES FOR APPROXIMATING A SIMPLE EIGENVALUE AND A CORRESPONDING EIGENVECTOR OF AN INTEGRAL OPERATOR BY THE RAYLEIGH–SCHRÖDINGER SCHEME USING THE FREDHOLM METHOD(2)

* REFERENCES *
ALGORITHM 17.8 AND TABLE 19.1 ALONG WITH THE DISCRETIZATION PROCEDURE OF SECTION 18 IN THE MONOGRAPH ENTITLED SPECTRAL PERTURBATION AND APPROXIMATION WITH NUMERICAL EXPERIMENTS BY B.V. LIMAYE. THE PROGRAM WAS WRITTEN BY R.P. KULKARNI AND B.V. LIMAYE.

* PARAMETERS *
L - THE DESIRED NUMBER OF ITERATIONS
M - THE ORDER OF THE MATRIX TM WHICH DISCRETIZES AN INTEGRAL OPERATOR T
N - THE ORDER OF THE MATRIX A
N1 - THE SERIAL NUMBER OF THE SELECTED EIGENVALUE OF A

* MAJOR DATA STRUCTURES *
TM - M BY M MATRIX WHICH DISCRETIZES THE INTEGRAL OPERATOR T
A - N BY N REAL SYMMETRIC MATRIX FOR WHICH WE INITIALLY SOLVE AN EIGENVALUE PROBLEM
D - N VECTOR CONTAINING EIGENVALUES OF A IN ASCENDING ORDER
Z - N BY N MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF A
 CORRESPONDING TO D(I); AND HAS EUCLIDEAN NORM ONE
LAM - L+1 VECTOR CONTAINING THE SELECTED NONZERO SIMPLE EIGENVALUE
 OF A IN LAM(0) AND THE SUCCESSIVE EIGENVALUE ITERATES
 IN LAM(1) TO LAM(L)
U - AN EIGENVECTOR OF A CORRESPONDING TO LAM(0)
V - THE EIGENVECTOR OF THE CONJUGATE TRANSPOSE OF A, WHICH
 EQUALS A, CORRESPONDING TO LAM(0) AND HAVING ITS INNER
 PRODUCT WITH U EQUAL TO 1/LAM(0)
PH - M BY L+1 MATRIX CONTAINING THE INITIAL EIGENVECTOR IN THE
 FIRST COLUMN AND THE SUCCESSIVE EIGENVECTOR ITERATES IN THE
 REMAINING COLUMNS
AV - M BY N MATRIX WHICH TRANSFORMS CERTAIN N VECTORS ASSOCIATED
 WITH A INTO M VECTORS
IV - M BY N MATRIX WHICH TRANSFORMS N VECTORS INTO M VECTORS BY
 USING LINEAR INTERPOLATION OF FUNCTIONS
KM, KN, - M BY M, N BY N, N BY M, M BY N MATRICES RESPECTIVELY, WHICH
KH, KV - STORE THE WEIGHTED VALUES OF THE KERNEL OF THE INTEGRAL
 OPERATOR T AT VARIOUS NODES
TAH - N BY M MATRIX USED FOR CALCULATING EIGENVALUE ITERATES
TAHPH - N VECTOR DENOTING THE PRODUCT OF TAH AND A COLUMN OF PH
C - N+1 BY N MATRIX CONTAINING THE COEFFICIENTS OF A LINEAR
 SYSTEM USED FOR CALCULATING EIGENVECTOR ITERATES
ZETA - SCALING FACTOR FOR THE FIRST ROW OF C
BETA - N+1 VECTOR CONTAINING THE RIGHT HAND SIDE OF A LINEAR SYSTEM
 WHOSE COEFFICIENT MATRIX IS C
SUM - N VECTOR USED IN CALCULATING BETA
SOL - LEAST SQUARES SOLUTION OF A LINEAR SYSTEM WHOSE COEFFICIENT MATRIX IS C

ALPHA - N BY L+1 MATRIX CONTAINING LAM(0)*U IN THE FIRST COLUMN AND THE SUCCESSIVE SOLUTION VECTORS SOL IN THE REMAINING COLUMNS

AVAL - M VECTOR DENOTING THE PRODUCT OF AV AND A COLUMN OF ALPHA

PRIT - M VECTOR DENOTING A WEIGHTED SUM OF PREVIOUS EIGENVECTOR ITERATES

TMPH - M VECTOR DENOTING THE PRODUCT OF TM AND A COLUMN OF PH

RESID - MAXIMUM NORM OF THE RESIDUAL, USED IN STOPPING CRITERIA

RELIN - RELATIVE INCREMENT IN AN EIGENVECTOR ITERATE, USED IN STOPPING CRITERIA

* SUBROUTINES CALLED *

EIGRS - COMPUTES THE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX (ROUTINE IN IMSL LIBRARY EDITION 9.2, EQUIVALENT TO ROUTINE EVCSF IN IMSL MATH/LIBRARY EDITION 10.0)

LLBQF - COMPUTES THE HIGH ACCURACY SOLUTION OF A LINEAR LEAST SQUARES PROBLEM (ROUTINE IN IMSL LIBRARY, EDITION 9.2, EQUIVALENT TO ROUTINE LSBRR IN IMSL MATH/LIBRARY, EDITION 10.0)

* FUNCTIONS CALLED *

KERNEL - REAL FUNCTION WHICH YIELDS KERNEL OF THE INTEGRAL OPERATOR T

NODE - REAL FUNCTION WHICH YIELDS NODES FOR Generating THE MATRICES KM, KN, KH, KV AND IV

WEIGHT - REAL FUNCTION WHICH YIELDS WEIGHTS FOR Generating THE MATRICES KM, KN, KH AND KV

MAXNORM - REAL FUNCTION WHICH YIELDS THE MAXIMUM NORM OF A VECTOR
PROGRAM ITEIG(TAPE1, TAPE2)

PARAMETER (L=30, M=100, N=10, N1=10)

INTEGER L, M, N, N1, I, J, K, JOB, IZ, IER, IA, NN, NB, IND, IX

REAL KM(M,M), KN(N,N), KH(N,M), KV(M,N), IV(M,N),
 A(N,N), D(N), Z(N,N), WK((2*N+1)*(N+3)+N),
 LAM(0:L), U(N), V(N), AV(M,N), PH(M,0:L), ALPHA(N,0:L),
 C(N+1,N), TAH(N,M), TM(M,M),
 TAHPH(N), SUM(N), BETA(N+1), CC(4), SOL(N), IWK(N),
 AVAL(N), PRIT(M), TMFH(M), X(M), Y(M),
 ZETA, RESID, RELIN,
 KERNEL, NODE, WEIGHT, MAXNORM

WRITE(2,10)
10 FORMAT(1H, 5X, "RAYLEIGH–SCHRODINGER SCHEME",/)
WRITE(2,20)
20 FORMAT(1H, 5X, "FREDHOLM METHOD(2)",/)
WRITE(2,30)
30 FORMAT(1H, 5X, "KERNEL:EXP(S*T)",/)
WRITE(2,40)
40 FORMAT(1H, 5X, "NODES:GAUSS TWO POINTS",/)
WRITE(2,50)
50 FORMAT(1H, 5X, "WEIGHTS:1/N",/)
WRITE(2,60) N, N1, M
60 FORMAT(1H, 5X, "N=", I2, 3X, "N1=", I2, 3X, "M=", I3, ",/"
WRITE(2,70)
70 FORMAT(1H, 5X, "PRECISION FOR STOPPING CRITERIA:1.0E-12",/)

* GENERATION OF KM, KN, KH AND KV

DO 110 I=1, M
 DO 120 J=1, M
 KM(I,J) = WEIGHT(J,M)*KERNEL(NODE(I,M), NODE(J,M))
 CONTINUE
 CONTINUE
DO 130 I=1, N
 DO 140 J=1, N
 KN(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,N), NODE(J,N))
 CONTINUE
 CONTINUE
DO 150 I=1, N
 DO 160 J=1, M
 KH(I,J) = WEIGHT(J,M)*KERNEL(NODE(I,N), NODE(J,M))
 CONTINUE
 CONTINUE
DO 170 I=1, M
 DO 180 J=1, N
 KV(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,M), NODE(J,N))
 CONTINUE
 CONTINUE
* GENERATION OF IV

\[
\text{J}=1
\]
\[
\text{DO 190 I}=1,\text{M}
\]
\[
\begin{align*}
\text{IF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(1,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=1.0 \\
\text{ELSEIF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(2,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=\frac{\text{NODE}(2,\text{N})-\text{NODE}(I,\text{M})}{\text{NODE}(2,\text{N})-\text{NODE}(1,\text{N})} \\
\text{ELSE} & \ IV(I,J)=0.0
\end{align*}
\]
\[
\text{END IF}
\]
190 \text{ CONTINUE}

\[
\text{DO 200 J}=2,\text{N}-1
\]
\[
\text{DO 210 I}=1,\text{M}
\]
\[
\begin{align*}
\text{IF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(J-1,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=0.0 \\
\text{ELSEIF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(J,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=\frac{\text{NODE}(J-1,\text{N})-\text{NODE}(I,\text{M})}{\text{NODE}(J-1,\text{N})-\text{NODE}(J,\text{N})} \\
\text{ELSEIF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(J+1,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=\frac{\text{NODE}(J+1,\text{N})-\text{NODE}(I,\text{M})}{\text{NODE}(J+1,\text{N})-\text{NODE}(J,\text{N})} \\
\text{ELSE} & \ IV(I,J)=0.0
\end{align*}
\]
210 \text{ CONTINUE}
200 \text{ CONTINUE}

\[
\text{J}=\text{N}
\]
\[
\text{DO 220 I}=1,\text{M}
\]
\[
\begin{align*}
\text{IF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(\text{N}-1,\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=0.0 \\
\text{ELSEIF} & \ (\text{NODE}(I,\text{M})<\text{NODE}(\text{N},\text{N})) \ \text{THEN} \\
\quad & \ IV(I,J)=\frac{\text{NODE}(\text{N}-1,\text{N})-\text{NODE}(I,\text{M})}{\text{NODE}(\text{N}-1,\text{N})-\text{NODE}(\text{N},\text{N})} \\
\text{ELSE} & \ IV(I,J)=1.0
\end{align*}
\]
220 \text{ CONTINUE}

* STEP 1(I): EIGENELEMENTS OF A

\[
\text{DO 310 I}=1,\text{N}
\]
*
\[
\text{DO 320 J}=1,\text{N}
\]
*
\[
\begin{align*}
\quad & \ A(I,J)=\text{KN}(I,J)
\end{align*}
\]
320 \text{ CONTINUE}
310 \text{ CONTINUE}

\[
\text{JOBN}=12
\]
\[
\text{IZ}=\text{N}
\]
\[
\text{CALL EIGRS}(A,\text{N},\text{JOBN},D,Z,\text{IZ},WK,\text{IER})
\]
\[
\text{WRITE}(2,330)
\]
\[
\begin{align*}
\quad & \ \text{FORMAT}(1H,5X,\text{"EIGENVALUES OF A"},/)
\end{align*}
\]
\[
\text{WRITE}(2,340)(D(I),I=1,\text{N})
\]
340 \text{ FORMAT}(1H,3X,3E21.13)
LAM(0) = D(N1)
DO 350 I=1,N
 U(I) = Z(I,N1)
350 CONTINUE

* STEP 1(II): EIGENVECTOR OF CONJUGATE TRANSPOSE OF A

DO 360 I=1,N
 V(I) = Z(I,N1)/LAM(0)
360 CONTINUE

* STEP 2

* GENERATION OF AV

DO 410 I=1,M
 DO 420 J=1,N
 AV(I,J) = 0.0
 DO 430 K=1,N
 AV(I,J) = AV(I,J)+IV(I,K)*KN(K,J)
430 CONTINUE
420 CONTINUE
410 CONTINUE

* COMPUTATION OF PH(0)

DO 440 I=1,M
 PH(I,0) = 0.0
 DO 450 J=1,N
 PH(I,0) = PH(I,0)+AV(I,J)*U(J)
450 CONTINUE
440 CONTINUE

* COMPUTATION OF ALPHA(0)

DO 460 I=1,N
 ALPHA(I,0) = LAM(0)*U(I)
460 CONTINUE

* GENERATION OF C

ZETA = 0.0
DO 470 I=1,N
 IF (ZETA .LT. ABS(D(I)-D(N1))) THEN
 ZETA = ABS(D(I)-D(N1))
 ENDIF
470 CONTINUE

ZETA = ZETA*LAM(0)
DO 480 J=1,N
 C(1,J) = ZETA*V(J)
480 CONTINUE

DO 490 I=2,N+1
 DO 500 J=1,N
 C(I,J) = A(I-1,J)
 500 CONTINUE
490 CONTINUE

DO 510 I=1,N
 C(I+1,I) = A(I,I)-LAM(0)
510 CONTINUE
* GENERATION OF TAH
 DO 520 I=1,N
 DO 530 J=1,M
 TAH(I,J) = KH(I,J)
 530 CONTINUE
 520 CONTINUE

* GENERATION OF TM
 DO 540 I=1,M
 DO 550 J=1,M
 TM(I,J) = KM(I,J)
 550 CONTINUE
 540 CONTINUE

 WRITE (2,690)
 690 FORMAT (/H 'J', 6X, 'LAM(J)', 10X, 'RESID', 5X, 'RELIN')
 J = 0
 WRITE (2,700) J, LAM(J)
 700 FORMAT (/H 'J', 5X, I2, 2X, E19.13, 2E10.2)

* THE ITERATION STARTS
 DO 710 J=1,L

* STEP 2(I): COMPUTATION OF J-TH EIGENVALUE ITERATE
 DO 720 I=1,N
 TAHPH(I) = 0.0
 DO 730 K=1,M
 TAHPH(I) = TAHPH(I) + TAH(I,K)*PH(K,J-1)
 730 CONTINUE
 720 CONTINUE

 LAM(J) = 0.0
 DO 740 I=1,N
 LAM(J) = LAM(J) + TAHPH(I)*V(I)
 740 CONTINUE

* STEP 2(II): SOLUTION OF (N+1)*N LINEAR SYSTEM

* CALCULATION OF RIGHT HAND SIDE
 DO 810 I=1,N
 SUM(I) = 0.0
 DO 820 K=0,J-1
 SUM(I) = SUM(I) + LAM(J-K)*ALPHA(I,K)
 820 CONTINUE
 810 CONTINUE

 BETA(1) = 0.0
 DO 830 I=1,N
 BETA(I+1) = -TAHPH(I) + SUM(I)
 830 CONTINUE
* LEAST SQUARES SOLUTION

IA = N+1
NN = N+1
IB = N+1
NB = 1
IND = 0
IX = N

CALL LLBQF(C, IA, NN, N, BETA, IB, NB, IND, CC, SOL, IX, IWK, WK, IER)
DO 840 I=1,N
 ALPHA(I,J) = SOL(I)
840 CONTINUE

* STEP 2(III): COMPUTATION OF THE J-TH EIGENVECTOR ITERATE

DO 910 I=1,M
 AVAL(I) = 0.0
 DO 920 K=1,N
 AVAL(I) = AVAL(I) + AV(I,K)*ALPHA(K,J)
920 CONTINUE
910 CONTINUE

DO 930 I=1,M
 PRIT(I) = 0.0
 DO 940 K=1,J
 PRIT(I) = PRIT(I) + (LAM(K-1)-LAM(K))*PH(I,J-K)
940 CONTINUE
930 CONTINUE

DO 950 I=1,M
 TMPH(I) = 0.0
 DO 960 K=1,M
 TMPH(I) = TMPH(I) + TM(I,K)*PH(K,J-1)
960 CONTINUE
950 CONTINUE

DO 970 I=1,M
 PH(I,J) = (AVAL(I)+PRIT(I)+TMPH(I))/LAM(0)
970 CONTINUE

* CALCULATION OF RESIDUAL AND RELATIVE INCREMENT

DO 980 I=1,M
 X(I) = TMPH(I)-LAM(J)*PH(I,J-1)
980 CONTINUE

RESID = MAXNORM(X,M)

DO 990 I=1,M
 X(I) = PH(I,J)-PH(I,J-1)
 Y(I) = PH(I,J)
990 CONTINUE

RELIN = MAXNORM(X,M)/MAXNORM(Y,M)

WRITE(2,700) J,LAM(J),RESID,RELIN
* STOPPING CRITERIA
 IF (RESID.LT.1.0E-12) THEN
 WRITE(2,1000)
 FORMAT(/,1H5X,"RESID.LT.1.0E-12")
 ENDIF
 IF (RELIN.LT.1.0E-12) THEN
 WRITE(2,1010)
 FORMAT(/,1H5X,"RELIN.LT.1.0E-12")
 ENDIF
 IF (RESID.LT.1.0E-12 .AND. RELIN.LT.1.0E-12) THEN
 GO TO 1100
 ENDIF

 710 CONTINUE

 1100 CONTINUE
 STOP
 END

REAL FUNCTION KERNEL(S,T)
REAL S,T
KERNEL = EXP(S*T)
RETURN
END

REAL FUNCTION NODE(I,N)
INTEGER I,I1,I2,N
I1 = I/2
I2 = I-I1*2
IF (I2.NE.0) THEN
 NODE = (FLOAT(I)-1.0/SQRT(3.0))/N
ELSE
 NODE = (FLOAT(I)-1.0+1.0/SQRT(3.0))/N
ENDIF
RETURN
END

REAL FUNCTION WEIGHT(I,N)
INTEGER I,N
WEIGHT = 1.0/FLOAT(N)
RETURN
END

REAL FUNCTION MAXNORM(X,M)
INTEGER M
REAL X(M)
MAXNORM = 0.0
DO 1110 I=1,M
 IF (MAXNORM.LT.ABS(X(I))) THEN
 MAXNORM = ABS(X(I))
 ENDIF
1110 CONTINUE
RETURN
END
OUTPUT OF PROGRAM ITEIG

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)

KERNEL: EXP(S*T)

NODES: GAUSS TWO POINTS

WEIGHTS: 1/N

N=10 N1=10 M=100

PRECISION FOR STOPPING CRITERIA: 1.0E-12

EIGENVALUES OF A

<table>
<thead>
<tr>
<th>J</th>
<th>LAM(J)</th>
<th>RESID</th>
<th>RELIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1353028494291E+01</td>
<td>.18E-01</td>
<td>.23E-01</td>
</tr>
<tr>
<td>1</td>
<td>0.1352614455737E+01</td>
<td>.16E-03</td>
<td>.23E-03</td>
</tr>
<tr>
<td>2</td>
<td>0.1353030065281E+01</td>
<td>.39E-05</td>
<td>.50E-05</td>
</tr>
<tr>
<td>3</td>
<td>0.1353030261682E+01</td>
<td>.92E-07</td>
<td>.13E-06</td>
</tr>
<tr>
<td>4</td>
<td>0.1353030164665E+01</td>
<td>.15E-08</td>
<td>.20E-08</td>
</tr>
<tr>
<td>5</td>
<td>0.1353030164536E+01</td>
<td>.60E-10</td>
<td>.86E-10</td>
</tr>
<tr>
<td>6</td>
<td>0.1353030164578E+01</td>
<td>.69E-12</td>
<td>.84E-12</td>
</tr>
</tbody>
</table>

RESID.LT.1.0E-12

RELIN.LT.1.0E-12
Computation of actual accuracy

As we have seen in Section 18, the computed eigenvalue iterates \(\lambda_j = \text{LAM}(J) \) will converge, under suitable conditions, to the simple eigenvalue \(\lambda^{(M)} \) of the matrix \([TM]\) which is nearest to \(\lambda_0 = \text{LAM}(0) \), and the computed eigenvector iterates \(\xi_j \) will converge to the corresponding eigenvector \(\xi^{(M)} \) of \([TM]\) which satisfies

\[
\langle \text{TABH} \xi^{(M)}, v \rangle = \lambda^{(M)}.
\]

We consider some additions to the program ITEIG which allow us to find the actual accuracy reached at each iterate by computing \(\lambda^{(M)}, \xi^{(M)}, \lambda^{(M)} - \lambda_j \) and the maximum norm of \(\xi^{(M)} - \xi_j \), \(j = 0, 1, \ldots, L \). This is done only for illustrative purposes. The whole point of PROGRAM ITEIG is to avoid calculating \(\lambda^{(M)} \) and \(\xi^{(M)} \).

* MAJOR DATA STRUCTURES *

\begin{itemize}
 \item \texttt{M1} - THE SERIAL NUMBER OF THE EIGENVALUE OF TM NEAREST TO LAM(0)
 \item \texttt{DD} - M VECTOR CONTAINING EIGENVALUES OF TM
 \item \texttt{ZZ} - M BY M MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF TM CORRESPONDING TO DD(I)
 \item \texttt{TABHZZ} - N VECTOR DENOTING THE PRODUCT OF TABH AND THE M1-TH COLUMN OF ZZ AND HAS EUCLIDEAN NORM ONE
 \item \texttt{SCP} - THE SCALAR PRODUCT OF TABHZZ AND V
 \item \texttt{PHI} - THE EIGENVECTOR OF TM CORRESPONDING TO DD(M1) WHOSE INNER PRODUCT WITH V EQUALS DD(M1)
\end{itemize}

We declare in the beginning of PROGRAM ITEIG

\begin{verbatim}
INTEGER M1
REAL DD(M), ZZ(M,M), WWK(M+M*(M+1)/2), TABHZZ(N), SCP, PHI(M)
\end{verbatim}

and add the following lines at places indicated by the statement numbers; the WRITE statements and their formats 690 and 700 are also changed.
* ADDENDUM TO PROGRAM ITEIG

* EIGENELEMENTS OF TM FOR COMPARISON

 JOB = 12
 IZ = M

 CALL EIGRS (TM,M,JOBN,DD,ZZ,IZ,WWK,IER)

* EIGENVALUE OF TM NEAREST TO LAM(0)

 DO 615 I=M,1,-1
 IF (DD(I).LE.LAM(O)) THEN
 M1 = I
 IF (M1.EQ.M) THEN
 GO TO 635
 ELSE
 GO TO 625
 ENDIF
 ENDIF
 CONTINUE

 M1 = 1

 625 IF (ABS(LAM(O)-DD(M1)).GT. ABS(LAM(O)-DD(M1+1))) THEN
 M1 = M1+1
 ENDIF

 635 CONTINUE

 WRITE (2,645) M1,DD(M1)

 645 FORMAT (/,'M1=',I3,'LAM=',E19.13,/)

 DO 655 I=1,N
 TAHZZ(I) = 0.0
 DO 665 J=1,M
 TAHZZ(I) = TAHZZ(I) + TAH(I,J)*ZZ(J,M1)
 CONTINUE
 CONTINUE

 SCP = 0.0
 DO 675 I=1,N
 SCP = SCP + TAHZZ(I)*V(I)
 CONTINUE

 DO 685 I=1,M
 PHI(I) = ZZ(I,M1)/SCP*DD(M1)
 X(I) = PHI(I)-PH(I,0)
 CONTINUE

 WRITE (2,690) J,LAM(J),DD(M1)-LAM(J),MAXNORM(X,M)

 690 FORMAT (/,'J',9X,'LAM(J)',8X,'LAM-LAM(J)',1X,'PH-PH(J)',3X,'RESID',5X,'RELIN')

 DO 995 I=1,M
 X(I) = PHI(I)-PH(I,J)
 CONTINUE

 WRITE (2,700) J,LAM(J),DD(M1)-LAM(J),MAXNORM(X,M),RESID,RELIN

 700 FORMAT (/,'J',9X,'LAM(J)',8X,'LAM-LAM(J)',1X,'PH-PH(J)',3X,'RESID',5X,'RELIN')
OUTPUT OF PROGRAM ITEIG WITH THE ADDENDUM

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)

KERNEL: EXP(S*T)

NODES: GAUSS TWO POINTS

WEIGHTS: 1/N

N=10 N1=10 M=100

PRECISION FOR STOPPING CRITERIA: 1.0**-12

EIGENVALUES OF A

<table>
<thead>
<tr>
<th>Value</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.133820135241E-14</td>
<td>1047006402339E-14</td>
</tr>
<tr>
<td>.4796177191072E-10</td>
<td>9238598296043E-08</td>
</tr>
<tr>
<td>.7441265877077E-04</td>
<td>3552405730829E-02</td>
</tr>
</tbody>
</table>

M1=100 LAM = .1353030164578E+01

<table>
<thead>
<tr>
<th>J</th>
<th>LAM(J)</th>
<th>LAM-LAM(J)</th>
<th>PH-PH(J)</th>
<th>RESID</th>
<th>RELIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.1353028494291E+01</td>
<td>.17E-05</td>
<td>.13E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.1352614455737E+01</td>
<td>.42E-03</td>
<td>.13E-03</td>
<td>.18E-01</td>
<td>.23E-01</td>
</tr>
<tr>
<td>2</td>
<td>.1353030065281E+01</td>
<td>.99E-07</td>
<td>.29E-05</td>
<td>.16E-03</td>
<td>.23E-03</td>
</tr>
<tr>
<td>3</td>
<td>.1353030261682E+01</td>
<td>-.97E-07</td>
<td>.73E-07</td>
<td>.39E-05</td>
<td>.50E-05</td>
</tr>
<tr>
<td>4</td>
<td>.1353030164665E+01</td>
<td>-.86E-10</td>
<td>.11E-08</td>
<td>.92E-07</td>
<td>.13E-06</td>
</tr>
<tr>
<td>5</td>
<td>.1353030164536E+01</td>
<td>.42E-10</td>
<td>.48E-10</td>
<td>.15E-08</td>
<td>.20E-08</td>
</tr>
<tr>
<td>6</td>
<td>.1353030164578E+01</td>
<td>.50E-13</td>
<td>.52E-12</td>
<td>.60E-10</td>
<td>.86E-10</td>
</tr>
<tr>
<td>7</td>
<td>.1353030164578E+01</td>
<td>-.28E-13</td>
<td>.75E-13</td>
<td>.69E-12</td>
<td>.84E-12</td>
</tr>
</tbody>
</table>

RESID.LT.1.0E-12

RELIN.LT.1.0E-12
Modifications of the program ITEIG

We discuss how PROGRAM ITEIG can be easily adapted to deal with a large number of different situations.

(i) Parameter values

By simply assigning different values to the parameters in the second line of the program, one can alter the maximum number \(L \) of the iterations, the size \(M \) of the grid which discretizes the integral operator \(T \), the order \(N \) of the matrix \(A \) in the initial eigenvalue problem, and the serial number \(N_1 \) of the selected eigenvalue of \(A \) with which we start the iteration process.

(ii) Various iteration schemes

Instead of the Rayleigh-Schrödinger scheme (11.18) used in PROGRAM ITEIG, we can use the fixed point scheme (11.19), the modified fixed point scheme (11.31), or the Ahués scheme (11.35). The algorithms 17.9, 17.10 and 17.11 indicate the required changes in the program ITEIG for implementing these schemes. There is no need for the vector PRIT in these schemes. Hence the DO loops 930 and 940 can be dropped altogether. In fact, there is no need for the double arrays \(\text{ALPHA}(N,0:L) \) and \(\text{PH}(M,0:L) \); instead, single arrays \(\text{ALPHA}(N) \), \(\text{PH}(M) \) and \(\text{PRPH}(M) \) (representing the current solution of the linear system, the current eigenvector iterate and the previous eigenvector iterate, respectively) will suffice.

Fixed point scheme: Change the DO loops 820 and 970 as follows:

\[
\begin{align*}
\text{DO} & \quad 820 \quad K = 0,J-1 \\
\text{SUM}(I) & = \text{SUM}(I) + \text{LAM}(J) \times \text{ALPHA}(I,K) \\
820 & \quad \text{CONTINUE}
\end{align*}
\]
and

![Image of FORTRAN code](https://example.com/fortran_code.png)

Modified fixed point scheme: Declare

```
REAL T2AH(N,M), T2M(M,M), T2APH(N), MU(L), T2MPH(M)
```

Add the following comments and statements after the nested DO loops 540 and 550:

* **GENERATION OF T2AH**

```
DO 555 I = 1,N
  DO 565 J = 1,M
    T2AH(I,J) = 0.0
    DO 575 K = 1,M
      T2AH(I,J) = T2AH(I,J) + TAH(I,K) * TM(K,J)
  CONTINUE
575
  CONTINUE
565
  CONTINUE
555
```

* **GENERATION OF T2M**

```
DO 585 I = 1,M
  DO 595 J = 1,M
    T2M(I,J) = 0.0
    DO 605 K = 1,M
      T2M(I,J) = T2M(I,J) + TM(I,K) * TM(K,J)
  CONTINUE
605
CONTINUE
595
CONTINUE
585
```
Add the following lines after statement 740:

```
DO 745 I = 1,N
   T2AHPH(I) = 0.0
   DO 755 K = 1,M
      T2AHPH(I) = T2AHPH(I) + T2AH(I,K)*PH(K,J-1)
   CONTINUE
745 CONTINUE

MU(J) = 0.0
DO 765 I = 1,N
   MU(J) = MU(J) + T2AHPH(I)*V(I)
765 CONTINUE

DO 775 I = 1,M
   T2MPH(I) = 0.0
   DO 785 K = 1,M
      T2MPH(I) = T2MPH(I) + T2MI(I,K)*PH(K,J-1)
   CONTINUE
785 CONTINUE
775 CONTINUE
```

Delete the DO loops 810 and 820.

Change the DO loops 830 and 970 as follows:

```
DO 830 I = 1,N
   BETA(I+1) = (-T2AHPH(I) + MU(J)/LAM(J)*TAH(I))/LAM(J)
830 CONTINUE
```

and

```
DO 970 I = 1,M
   PH(I,J) = (LAM(J)*AVAL(I) + (LAM(O) - MU(J)/LAM(J))*TMPH(I)
              + T2MPH(I))/(LAM(O)*LAM(J))
970 CONTINUE
```
Ahués scheme: Same additions and deletions as in the case of the modified fixed point scheme. Also, change the DO loops 830 and 970 as follows:

\[
\text{DO 830 } I = 1,N
\]
\[
BETA(I+1) = (-T2AHPH(I)+LAM(J)*TAHPH(I)) \\
1 +LAM(O)*((\mu(J)-LAM(J)*LAM(J)*U(I))/LAM(J))
\]
830 CONTINUE

and

\[
\text{DO 970 } I = 1,M
\]
\[
PH(I,J) = (LAM(J)*AVAL(I)+(LAM(J)*LAM(J)-\mu(J))PH(I,0)) \\
1 +((LAM(O)-LAM(J))TMPH(I)) \\
1 +T2MPH(I)/(LAM(O)*LAM(J))
\]
970 CONTINUE

(iii) Various methods

By altering, if necessary, the matrices A, AV and TAHP appearing in the nested DO loops 310-320, 410-430 and 520-530, respectively, one can employ any of the following methods: Projection, Sloan, Galerkin(1) and (2), Nyström, Fredholm(1). The required alterations can be quickly found from Table 19.1. For example, to employ the Nyström method we need only alter the matrix AV; for this purpose we replace the nested DO loops 410-430 by

\[
\text{DO 410 } I = 1,M
\]
\[
\text{DO 420 } J = 1,N
\]
\[
AV(I,J) = KV(I,J)
\]
420 CONTINUE
410 CONTINUE

With these changes, the program will work provided the matrix A is real and symmetric. If it is not, further changes are necessary. They are outlined later.
(iv) **Kernel, nodes and weights**

By changing the definitions of `KERNEL`, `NODE` and `WEIGHT` in the function subprograms given at the end of `PROGRAM ITEIG`, we can vary the kernel of the integral operator \(T \) as well as the nodes and the weights used in the quadrature formula which discretizes \(T \). With these changes, the program will work if the matrix \(A \) remains real and symmetric. Otherwise further changes are required, as detailed below.

(v) **General complex matrix \(A \)**

The matrix \(A \) appearing in the DO loops 310-320 is real and symmetric, and it remains so for the Fredholm and the Nyström methods as long as the kernel is real and symmetric and the weights are all real and equal. When \(A \) is not real and symmetric, make the following changes

1. **COMPLEX** (instead of **REAL**) declarations of appropriate arguments; use of the FORTRAN 77 intrinsic function **CONJG** which yields the conjugate of a complex number.

2. Instead of the routine **EIGRS** of the IMSL LIBRARY, Edition 9.2 (or its equivalent **EVCSF** of the IMSL MATH/LIBRARY, Edition 10.0), the following IMSL routines need to be called in appropriate cases.

<table>
<thead>
<tr>
<th>(A)</th>
<th>Edition 9.2</th>
<th>Edition 10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Hermitian</td>
<td>EIGCH</td>
<td>EVCHF</td>
</tr>
<tr>
<td>Real general</td>
<td>EIGRF</td>
<td>EVCRG</td>
</tr>
<tr>
<td>Complex general</td>
<td>EIGOC</td>
<td>EVOOG</td>
</tr>
</tbody>
</table>

A set of Library interface routines is available to link the routines in the old and the new editions. The routines in Edition 9.2 treat a complex matrix of order \(N \) as a real vector of length \(2N^2 \); an appropriate equivalence statement may be required when an array is of one type in the calling program but of another type in the subroutine.
For the routines in Edition 10.0, the eigenvalues appear in a complex N vector \(\text{EVAL} \) in increasing lexicographic order and the \(I \)-th column of a complex \(N \) by \(N \) matrix \(\text{EVEC} \) gives an eigenvector corresponding to \(\text{EVAL}(I) \); each eigenvector \(U \) is normalized such that

\[
\max\{|\text{Re } U(1)|+|\text{Im } U(1)|, \ldots, |\text{Re } U(N)|+|\text{Im } U(N)|\} = 1.
\]

We then pick a simple nonzero eigenvalue \(\text{LAM}(0) \) of \(A \) and a corresponding eigenvector \(U \) according to our choice.

3. Let \(\text{ACT} \) denote the conjugate transpose of the matrix \(A \). If \(A \) is normal (i.e., \(\text{ACT} \) commutes with \(A \)), then \(U \) itself is an eigenvector of \(\text{ACT} \) corresponding to \(\text{CONJG}(\text{LAM}(0)) \). Hence in this case we simply need to replace \(\text{LAM}(0) \) by \(\text{CONJG}(\text{LAM}(0)) \) in the DO loop 360. If \(A \) is Hermitian, then \(\text{ACT} = A \) and \(\text{CONJG}(\text{LAM}(0)) = \text{LAM}(0) \), and there is no change in the DO loop 360.

For a general (real or complex) matrix \(A \), we generate \(\text{ACT} \) as follows:

```fortran
* GENERATION OF ACT
DO 360 I = 1,N
   DO 370 J = 1,N
      ACT(I,J) = CONJG(A(J,I))
370    CONTINUE
360    CONTINUE
```

We can then solve the eigenvalue problem for \(\text{ACT} \) just as we do for \(A \). Let \(\text{CONJG}(\text{LAM}(0)) \) be the \(N^2 \)-th entry of the vector \(D \) or \(\text{EVAL} \), so that an eigenvector of \(\text{ACT} \) corresponding to \(\text{CONJG}(\text{LAM}(0)) \) appears in the \(N^2 \)-th column of the matrix \(Z \) or \(\text{EVEC} \). To obtain an eigenvector \(V \) of \(\text{ACT} \) whose inner product with \(U \) is \(1/\text{LAM}(0) \), we proceed as follows. The complex argument \(\text{SP} \) denotes 'scalar product'.
COMPLEX SP
SP = 0.0
DO 380 I = 1,N
 SP = SP+U(I)*CONJG(Z(I,N2))
380 CONTINUE
DO 390 I = 1,N
 V(I) = Z(I,N2)/CONJG(SP*LAGM(0))
390 CONTINUE

Alternatively, we can find V as the least squares solution of a linear system with its coefficient matrix CBAR and right hand side BETABAR, defined as follows:

COMPLEX CBAR(N+1,N), BETABAR(N+1)
* GENERATION OF CBAR
 DO 360 J = 1,N
 CBAR(1,J) = CONJG(U(J))
360 CONTINUE
 DO 370 I = 2, N+1
 DO 380 J = 1,N
 CBAR(I,J) = ACT(I-1,J)
380 CONTINUE
370 CONTINUE
 DO 390 I = 1,N
 CBAR(I+1,I) = ACT(I,I)-CONJG(LAM(0))
390 CONTINUE
 BETABAR(1) = 1/CONJG(LAM(0))
 DO 400 I = 1,N
 BETABAR(I+1) = 0.0
400 CONTINUE
If ACT is a real matrix, the IMSL subroutine LLBQF of Edition 9.2 or LSBRR of Edition 10.0 can be used for the solution of the above least squares problem. The LINPACK routines SQRDC and SQRSL also give the solution of a least squares problem with a real coefficient matrix. Their complex analogues CQRDC and CQRSL are available.

Since V is, in general, a complex array, and since the inner product is conjugate linear in the second variable, we change \(V(I) \) to \(\text{CONJG}(V(I)) \) in the DO loop 740 of PROGRAM ITEIG which gives \(\text{LAM}(J) \) and in the DO loop 765 of its modification which gives \(\text{MU}(J) \).

4. If the functions KERNEL and WEIGHT are real-valued, \(\text{LAM}(0) \) is real and the entries of \(U \) and \(V \) are real, then the coefficient matrix \(C \) and the right hand side vector BETA are real. We can then continue to use the IMSL routine LLBQF or LSBRR for obtaining the least squares solution \(\text{ALPHA} \) in the DO loop 840. Otherwise, LINPACK routines CQRDC and CQRSL can be employed to handle the complex case.

Unless \(A \) is normal and \(U \) has Euclidean norm 1, the scaling factor \(ZETA \) for the first row of \(C \) may be inappropriate (Cf. (18.15) and (18.17)). Hence the DO loop 470 may be dropped and the DO loop 480 be changed as follows:

\[
\text{DO 480 } J = 1,N \\
C(1,J) = \text{CONJG}(V(J)) \\
480 \quad \text{CONTINUE}
\]

We describe an alternative method for obtaining the solution \(\text{SOL} \) in the DO loop 840. It is based on our discussion of (18.18) and (18.20).

Instead of generating the matrix \(C \) in the DO loops 470 to 510, we generate an \(N \) by \(N \) matrix \(B \) as follows.
COMPLEX B(N,N)

* GENERATION OF B

DO 470 I = 1,N
 DO 480 J = 1,N
 B(I,J) = A(I,J) - LAM(0)*LAM(0)*U(I)*CONJG(V(J))
 480 CONTINUE

CONTINUE

DO 490 I = 1,N
 B(I,I) = B(I,I) - LAM(0)
490 CONTINUE

Then SOL can be obtained as the solution of the linear system with coefficient matrix B and right hand side BETA(I+1),I=1,...,N. The following IMSL routines can be used to compute this solution.

<table>
<thead>
<tr>
<th>B</th>
<th>Edition 9.2</th>
<th>Edition 10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real symmetric</td>
<td>LEQ2S</td>
<td>LSASF</td>
</tr>
<tr>
<td>Complex Hermitian</td>
<td>-</td>
<td>LSAHF</td>
</tr>
<tr>
<td>Real general</td>
<td>LEQT2F</td>
<td>LSARG</td>
</tr>
<tr>
<td>Complex general</td>
<td>LEQ2C</td>
<td>LSACG</td>
</tr>
</tbody>
</table>