1. INTRODUCTION

In this paper we discuss three cardinal numbers associated with a topological group G: the weight of G, $\omega(G)$, the local weight, $\omega_0(G)$, and $\theta(G)$, the least cardinal of a family of open sets whose intersection is a singleton. It is clear that $\theta(G) \leq \omega_0(G) \leq \omega(G)$. We give necessary and sufficient conditions for $\theta(G) = \omega_0(G) = \omega(G)$. In particular they are equal for all σ-compact locally compact Hausdorff groups.

The following notation will be used throughout the paper. If G is a topological group, we denote

(a) the minimal cardinality of a family of open sets having as intersection the identity, 1, in G by $\theta(G)$;

(b) the minimal cardinality of an open basis for G at 1 by $\omega_0(G)$;

(c) the minimal cardinality of an open basis for G by $\omega(G)$.

If H is a topological subgroup of G, we write $H \leq G$.

Note that if $H \leq G$, then $\theta(H) \leq \theta(G)$, $\omega_0(H) \leq \omega_0(G)$, and $\omega(H) \leq \omega(G)$.

PROPOSITION 1 If G is any topological group then
\[\Theta(G) \leq \omega_0(G) \leq \omega(G). \]

Proof. Clearly $\Theta(G) \leq \omega_0(G)$ and $\omega_0(G) \leq \omega(G)$. So
\[\Theta(G) \leq \omega_0(G) \leq \omega(G). \]

We note here that if an infinite Hausdorff non-discrete topological group, G, satisfies the second axiom of countability, then
\[\Theta(G) = \omega_0(G) = \omega(G) = \aleph_0. \]
Thus if G is an infinite compact metrizable group, then $\Theta(G) = \omega(G) = \aleph_0$.

DEFINITION Let $U(n)$, $n \in \mathbb{N}$, be the compact group of $n \times n$ unitary matrices, and define $U = \prod_{n=1}^{\infty} U(n)$.

As U is compact and metrizable $\omega(U) = \Theta(U) = \omega_0(U) = \aleph_0$.

2. COMPACT GROUPS

We use the following refinement of the Embedding Lemma, ([6], P.116) in the proof of Lemma 3. It's proof is analogous to the usual proof.

LEMMA 2 Let $\{(Y_i, T_i) \mid i \in I\}$ be a family of Hausdorff spaces, and for each $i \in I$, let f_i be a mapping of a Hausdorff space (X, τ) into (Y_i, T_i). Let $e : (X, \tau) \to \prod_{i \in I} (Y_i, T_i)$ be defined by $e(x) = \prod_{i \in I} f_i(x)$, for each $x \in X$. Then e is a homeomorphism of (X, τ) onto the space $(e(X), \tau')$ where τ' is the subspace topology, if
(i) each \(f_i \) is continuous, and

(ii) given \(x \in X \) and any closed set \(A \) not containing \(x \), there is a finite subset \(\{i_1, i_2, \ldots, i_n\} \) of \(I \) such that

the map \(F = f_{i_1} \times f_{i_2} \times \cdots \times f_{i_n} : X \longrightarrow \prod_{j=1}^{n} (Y_j, \tau_j) \) satisfies

\[F(x) \notin F(A). \]

Lemma 3 Let \(G \) be a topological group and \(\{H_i \mid i \in I\} \) an infinite family of Hausdorff groups such that \(G \) is topologically isomorphic to a subgroup of the product \(\prod_{i \in I} H_i \). Then there is a subset \(J \) of \(I \), with \(\text{card } J = \omega_0(G) \), such that \(G \) is topologically isomorphic to a subgroup of \(\prod_{i \in J} H_i \).

Proof Without loss of generality, consider \(G \) to be a subgroup of \(\prod_{i \in I} H_i \). Let \(B = \{B_k \mid k \in K\} \) be a basis for \(G \) at the identity, \(1 \), such that \(\text{card } K = \omega_0(G) \). For each \(k \in K \) there exists an \(O_k \) such that

\[O_k \cap G \subseteq B_k \quad \text{where} \quad O_k = O_{k_1} \times O_{k_2} \times \cdots \times O_{k_n} \times \prod_{i \in I \setminus \{k_1, k_2, \ldots, k_n\}} H_i \]

is a member of the natural basis for \(\prod_{i \in I} H_i \) at the identity. For each \(k \in K \) put \(J_k = \{k_1, k_2, \ldots, k_n\} \) and \(J = \bigcup_{k \in K} J_k \). Then, as each \(J_k \) is finite, \(\text{card } J = \text{card } K = \omega_0(G) \).

Let \(P : \prod_{i \in I} H_i \longrightarrow \prod_{i \in J} H_i \) be the natural projection mapping. We need to show \(P : G \longrightarrow P(G) \) is a homeomorphism. As each \(p_i : G \longrightarrow H_i \) given by \(p_i(x) = p_i(\prod_{i \in I} x_i) = x_i \), is continuous, condition (i) of the Embedding Lemma is satisfied. To see condition (ii) holds, we need consider only the identity \(1 \) and any closed set \(A \) in \(G \) such that \(1 \notin A \). Then \(1 \in G \setminus A \) which is open, and so there is a \(B_k \in B \) such
that \(1 \in B_k \cap G\). Therefore there is a basic open neighbourhood \(O_k\) such that \(1 \in O_k \cap G\); that is

\[1 \in (O_{k_1} \times O_{k_2} \times \ldots \times O_{k_n} \times \prod_{i \in I \setminus \{k_1, k_2, \ldots, k_n\}} H_i) \cap G.\]

Define

\[F : G \to \prod_{j=1}^n H_{k_j} \quad \text{by} \quad F(x) = \prod_{j=1}^n P_j(x), \quad \text{for} \ x \in G.\]

Then

\[F(1) \in O_{k_1} \times O_{k_2} \times \ldots \times O_{k_n}\]

which is open and \(F(A) \cap (O_{k_1} \times O_{k_2} \times \ldots \times O_{k_n}) = \emptyset\)

which implies \(\overline{F(A)} \cap (O_{k_1} \times O_{k_2} \times \ldots \times O_{k_n}) = \emptyset\). Hence \(F(1) \notin F(A)\),

and so by our Embedding Lemma, \(P\) is a homeomorphism of \(G\) onto \(P(G)\).

As \(P\) is also a homomorphism we have that \(G\) is topologically isomorphic to \(P(G)\), a subgroup of \(\prod_{i \in J} H_i\).

The countable case of the above result was used by Brooks, Morris and Saxon [2, Corollary 6].

Using a similar argument to the proof of Lemma 3, we obtain a stronger result for compact groups.

Lemma 4 Let \(G\) be a compact group and \(\{H_i \mid i \in I\}\) an infinite family of Hausdorff groups such that \(G\) is topologically isomorphic to a subgroup of the product \(\prod_{i \in I} H_i\). Then there is a subset \(J\) of \(I\), with \(\text{card } J = \theta(G)\), such that \(G\) is topologically isomorphic to a subgroup of \(\prod_{i \in J} H_i\).

Proof Again, consider \(G\) to be a subgroup of \(\prod_{i \in I} H_i\), and let

\[\Phi(G) = \{U_k \mid k \in K\}\]

be a family of open sets of \(G\) such that

\[\text{card } \Phi(G) = \theta(G) \quad \text{and} \quad \bigcap_{k \in K} U_k = \{1\}.\]

For each \(k \in K\) there is an
open set \(O_k \) such that \(O_k \cap G \subseteq U_k \) where

\[
O_k = O_{k_1} \times O_{k_2} \times \ldots \times O_{k_n} \times \prod_{i \in I \setminus \{k_1, k_2, \ldots, k_n\}} H_i
\]

is a member of the natural basis for \(\prod H_i \) at the identity. For each \(k \in K \) put \(J_k = \{k_1, k_2, \ldots, k_n\} \) and \(J = \bigcup_{k \in K} J_k \). Then \(\text{card } J = \text{card } K = \theta(G) \).

Let \(P : \prod H_i \to \prod H_i \) be the natural projection mapping. Then \(P : G \to \prod H_i \) is a continuous injective homomorphism. As \(G \) is compact, \(G \) is topologically to \(P(G) \), from which the result follows. //

The next lemma is an immediate consequence of the Peter-Weyl Theorem ([17], P.62).

LEMMA 5 If \(G \) is a compact Hausdorff group, then it is topologically isomorphic to a subgroup of a product of copies of the group \(\mathbb{U} \).

THEOREM 1 [3, 28.58] Let \(G \) be an infinite compact Hausdorff group. Then \(\theta(G) = \omega_0(G) = \omega(G) \).

Proof By Lemma 5, we can, without loss of generality, assume that \(G \) is a subgroup of \(\mathbb{U}^{\text{card } I} \), for some index set \(I \). But using Lemma 4 we have that \(G \) is topologically isomorphic to a subgroup of \(\mathbb{U}^{\theta(G)} \).

So \(\omega(G) \leq \omega(\mathbb{U}^{\theta(G)}) \)

\[
= \max \{\omega(\mathbb{U}), \theta(G)\}
\]

\[
= \max \{\theta(G), \theta(G)\}
\]

\[
= \theta(G), \text{ as } \theta(G) \text{ is infinite.}
\]
But $\theta(G) \leq \omega(G)$ from Proposition 1. Thus $\theta(G) = \omega(G)$, from which it follows that $\omega_0(G) = \theta(G) = \omega(G)$. //

Hulanicki [3] proved that $\text{card } G = 2^{\theta(G)}$ for G, any infinite compact Hausdorff group, or any infinite connected locally compact Hausdorff group. Elsewhere we shall give quite a different proof of a more general result. Here we point out a corollary to this result and Theorem 1.

THEOREM 2 [3, 28.58] Let G be any infinite compact Hausdorff group. Then $\text{card } G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}$.

3. ALMOST CONNECTED GROUPS

DEFINITION A locally compact Hausdorff group is said to be *almost connected* if the group G/G_0 is compact, where G_0 is the connected component of the identity. (See [1].)

Of course, the class of almost connected groups includes the class of compact Hausdorff groups and the class of connected locally compact Hausdorff groups.

THEOREM 3 Let G be any infinite almost connected group. Then $\theta(G) = \omega_0(G) = \omega(G)$ and $\text{card } G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}$.

Proof By Mostert ([7], Theorem 8) G is homeomorphic to $G_0 \times G/G_0$.

The Iwasawa Structure Theorem ([6], p.118) says that the connected locally compact Hausdorff group G_0 is homeomorphic to $\mathbb{R}^n \times K$.
where K is a compact group, \mathbb{R} is the topological group of real numbers with the usual topology, and n is a non-negative integer. As G/G_0 is compact, we have that G is homeomorphic to $\mathbb{R}^n \times K'$ where K' is the compact Hausdorff group $K \times G/G_0$.

If K' is finite, then clearly $\theta(G) = \omega_0(G) = \omega(G) = \aleph_0$, and $\text{card } G = 2^{\aleph_0}$.

If K' is infinite, then $\theta(G) = \theta(\mathbb{R}^n \times K') = \theta(\mathbb{R}^n) \times \theta(K')$.

Since $\theta(\mathbb{R}^n) = \aleph_0$ we have that $\theta(G) = \theta(K')$. Similarly, $\omega_0(G) = \omega_0(K')$ and $\omega(G) = \omega(K')$. Then, by Theorem 1, we have $\theta(G) = \omega_0(G) = \omega(G)$.

Further, $\text{card } G = \text{card } \mathbb{R}^n \times \text{card } K'$

$$= 2^{\aleph_0} \times 2^{\theta(K')}$$

$$= 2^{\aleph_0} + \theta(K')$$

$$= 2^{\theta(K')}.$$

Hence, $\text{card } G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}$.

4. THE GENERAL CASE

For G, any topological group, we denote the least cardinality of a family of compact sets whose union is G by $\gamma(G)$.

Lemma 6 Every locally compact Hausdorff group has an open almost connected subgroup.
Proof. Let G be any locally compact Hausdorff group and let G_0 be the component of the identity. Let $f : G \to G/G_0$ be the quotient mapping. Then the quotient group G/G_0 is a locally compact totally disconnected group and so has a basis of compact open subgroups, ([7], p.21). Take one such compact open subgroup, K. Then $f^{-1}(K) = H$ is an open subgroup of G. As H is open and therefore closed, $G_0 \subseteq H$, and so $H_0 = G_0$. This implies $H/H_0 = H/G_0 = K$. Hence H is a locally compact Hausdorff group, and H/H_0 is compact, from which the result follows.

THEOREM 4 Let G be any infinite locally compact Hausdorff group.

Then (i) $\omega_0(G) = \theta(G)$; (ii) $\omega(G) = \max\{\omega_0(G), \gamma(G)\}$ and (iii) $\text{card } G = \max\{2^{\omega_0(G)}, \gamma(G)\}$.

Proof (i) Let H be an open almost connected subgroup of G. Then $\omega_0(H) = \theta(H)$ by Theorem 3. We show that $\omega_0(G) = \omega_0(H)$ and $\theta(G) = \theta(H)$, from which the result will follow.

Let B_0 be a basis for H at the identity with $\text{card } B_0 = \omega_0(H)$. Then B_0 is also a basis for G at the identity. So $\omega_0(G) \leq \omega_0(H)$, and hence $\omega_0(G) = \omega_0(H)$.

Let $\phi(H)$ be a family of open sets in H whose intersection is the identity. Then $\phi(H)$ is also a family of open sets in G whose intersection is the identity, as H is open. So $\theta(G) \leq \theta(H)$, and hence $\theta(G) = \theta(H)$.
(ii) If G is compact $\omega(G) = \omega_0(G)$ from Theorem 3, and
\[\gamma(G) = 1, \] which implies $\omega(G) = \max\{\omega_0(G), \gamma(G)\}$. So assume G is non-compact. Let $\{g_i \mid i \in I\}$ be a complete set of coset representatives of H in G, and let $\text{card } I = m$. We show firstly that
\[\omega(G) = \max\{\omega(H), m\}. \]
Let B be a basis for H. It is clear that
\[\{g_i B \mid B \in B, i \in I\} \] is a basis for G as H is open. Thus
\[\omega(G) \leq \max\{\omega(H), m\}. \]
We know that $\omega(H) \leq \omega(G)$, and, as each coset is open and must contain a basic open set of G, $\omega(G) \geq m$. Hence
\[\omega(G) = \max\{\omega(H), m\}. \]

As H is almost connected, it is homeomorphic to $\mathbb{R}^n \times K$, where K is a compact group and $n \in \mathbb{N}$. Therefore $\gamma(H) \leq \aleph_0$.

Let $\{A_n \mid n \in \mathbb{N}\}$ be a family of compact sets whose union is H. Then $\{g_i A_n \mid i \in I, n \in \mathbb{N}\}$ is a family of compact sets whose union is G, and therefore $\gamma(G) \leq \max\{\aleph_0, m\}$. Let $\{K_j \mid j \in J\}$ be a family of compact sets whose union is G and with $\text{card } J = \gamma(G)$.

Then each K_j, being compact, is contained in the union of a finite number of cosets; that is, $K_j \subseteq \bigcup_{k=1}^{m_j} g_{i_k} H$ for $m_j \in \mathbb{N}$. So
\[\gamma(G) = \text{card } J \geq m. \]
Now, clearly, $\gamma(G) \geq \aleph_0$, and so we get
\[\gamma(G) = \max\{\aleph_0, m\}. \]

Finally, we have $\omega(G) = \max\{\omega(H), m\}$
\[= \max\{\omega_0(G), m\}, \text{ as } \omega(H) = \omega_0(H) = \omega_0(G) \]
\[= \max\{\omega_0(G), m, \aleph_0\}, \text{ as } \omega(G) \text{ is infinite} \]
\[= \max\{\omega_0(G), \gamma(G)\}. \]
(iii) If G is compact we already have that
\[
\text{card } G = 2^{\omega_0(G)} = \max \{2^{\omega_0(G)}, \gamma(G)\}
\]
from Theorem 2, so again assume G is non-compact. Then
\[
\text{card } G = \text{card } H \cdot m = \max \{2^{\omega_0(H)}, m\} = \max \{2^{\omega_0(G)}, \gamma(G)\}.
\]

We note that Hulanicki's Fundamental lemma is a corollary to the above theorem.

COROLLARY 1 ([4], p.67) If G is an infinite locally compact Hausdorff group, then $\text{card } G \geq 2^{\theta(G)}$.

COROLLARY 2 Let G be an infinite locally compact Hausdorff group. Then the following are equivalent

(i) $\omega(G) = \omega_0(G)$;
(ii) $\gamma(G) \leq \omega_0(G)$.

COROLLARY 3 ([3], p.100) If G is an infinite σ-compact locally compact Hausdorff group, then $\omega(G) = \omega_0(G) = \theta(G)$.

COROLLARY 4 ([4], p.69) If the locally compact Hausdorff group, G, is $2^{\theta(G)}$-compact, then $\text{card } G = 2^{\theta(G)}$.

REFERENCES

Department of Mathematics
La Trobe University
Bundoora Vic. 3083
Australia