Remarks on Non-Commutative Banach Function Spaces

P.G. Dodds and B. de Pagter *

The purpose of this note is to outline an approach to the duality theory of non-commutative Banach function spaces which extends earlier work of Yeadon [Y1],[Y2]. The details will appear elsewhere.

Let \(\mathcal{M} \) be a semifinite von Neumann algebra with a semifinite normal trace \(\tau \) and let \(\hat{\mathcal{M}} \) be the *-algebra of \(\tau \)-measurable operators (in the sense of Nelson [N]) affiliated with \(\mathcal{M} \). For each \(x \in \mathcal{M} \) and \(0 < t \in \mathbb{R} \), the generalized singular value \(\mu_t(x) \) is defined to be

\[
\mu_t(x) = \inf \{ \lambda \geq 0 : \tau(1 - e_\lambda) \leq t \}
\]

where \(\{ e_\lambda \} \) denotes the spectral resolution of \(|x| \). Our approach is based on the following result.

Proposition 1. If \(x, y \in \hat{\mathcal{M}} \), then

\[
\sup \left\{ \int_E |\mu_t(x) - \mu_t(y)| \, dt : |E| \leq u \right\} \leq \int_0^u \mu_t(x - y) \, dt
\]

for each \(u \geq 0 \).

The preceding result is a common generalization of the well known inequality of Markus ([M], Theorem 5.4) for compact operators and that of Lorentz and Shimogaki [LS] for the case that \(\mathcal{M} \) is abelian. A similar inequality has been established by Hiai and Nakamura [HN] via the real interpolation method. Our present approach however is direct and is not based on interpolation methods.

* Research supported by A.R.G.S.
Suppose now that $L_\rho \subseteq L^0(\mathcal{M}, dm)$ is a rearrangement invariant Banach function space for which ρ is an invariant Fatou norm (see, for example [KPS], Chapter II). The non-commutative space $L_\rho(\mathcal{M})$ is defined by setting

$$L_\rho(\mathcal{M}) = \{ x \in \mathcal{M} : \mu(x) \in L_\rho \}$$

and for $x \in L_\rho(\mathcal{M})$, $\| x \|_\rho$ is defined to be $\rho(\mu(x))$. The generalized Markus inequality given by Proposition 1 may be used to show that the spaces $L_\rho(\mathcal{M})$ are Banach spaces. We define the space

$$L_\rho(\mathcal{M})^\times = \{ x \in \mathcal{M} : xy \in L^1(\mathcal{M}) \text{ for all } y \in L_\rho(\mathcal{M}) \}.$$

The space $L_\rho(\mathcal{M})^\times$ may be identified with a subspace of the Banach dual $L_\rho(\mathcal{M})^*$. If L^\times_ρ denotes the (Köthe) associate space of L_ρ and if $L_\rho(\mathcal{M})^\times$ is equipped with the norm induced by $L_\rho(\mathcal{M})^*$, then we have the following identification.

Proposition 2.

$$L_\rho(\mathcal{M})^\times = L^\times_\rho(\mathcal{M})$$

In turn, the non-commutative associate space $L^\times_\rho(\mathcal{M})$ may be identified via a Radon-Nikodym type theorem as that subspace of the Banach dual $L_\rho(\mathcal{M})^*$ consisting of normal linear functionals.

References

[LS] G.G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function

[M] A.M. Markus, The eigen and singular values of the sum and product of linear opera-
tors, Russian Math. Surveys 19 (1964) 91-120.

(1975) 91-102.

The Flinders University of South Australia
Bedford Park, S.A. 5042

and

Delft University of Technology
Julianalaan 132, 2628 BL Delft
The Netherlands.