SINGULAR INTEGRALS ON BMO

Douglas S. Kurtz

Let \(f \) be a locally integrable function on \(\mathbb{R}^n \). We say \(f \) has bounded mean oscillation, \(f \in \text{BMO} \), if

\[
\sup_B \inf_{c \in \mathbb{R}} \frac{1}{|B|} \int_B |f(y) - c| \, dy < +\infty,
\]

where the supremum is taken over all balls \(B \subset \mathbb{R}^n \). Identifying functions which differ by an additive constant a.e. makes BMO a Banach space with norm \(\| \cdot \|_{\text{BMO}} \) equal to the left hand side of (1). Note that \(L^\infty \) is a proper subset of BMO, since \(\log|x| \in \text{BMO} \).

Let \(K \) be a locally integrable function on \(\mathbb{R}^n \setminus \{0\} \) such that

\[
Tf(x) = \lim_{\epsilon \downarrow 0} \int_{\{ |y| > \epsilon \}} K(y)f(x-y) \, dy
\]

is a bounded operator on \(L^2 \). We say \(K \) satisfies condition \(H_r \), \(1 \leq r < \infty \), if there is a non-decreasing function \(s \) on \((0,1) \) such that

\[
\sum_{j=1}^{\infty} s(2^{-j}) < +\infty \quad \text{and} \quad \left[\int_{\{x: R < |x| < 2R\}} |K(x-y) - K(x)|^r \, dx \right]^{1/r} \leq s\left(\frac{1}{2}\right) R^{-n/r'}, \quad \text{for } |y| < R/2.
\]

Define \(H_\infty \) by the obvious modification.

If \(f \in L^\infty \) is supported on a set of finite measure and \(K \in H_1 \), then \(Tf \) exists a.e. (i.e., the limit exists and is finite), \(Tf \in \text{BMO} \), and \(\|Tf\|_{\text{BMO}} \leq C\|f\|_{\text{BMO}} \) [2]. On the other hand, if \(f \) is merely bounded, then without a suitable modification \(Tf \) may fail to exist on a set of positive measure. For example, if \(f(x) = x_i^E(x) \) is the characteristic function of \(E = \{x \in \mathbb{R}^n: x_i > 0, i=1,...,n\} \), then the Riesz transforms of \(f \), defined by the kernels \(K_j(x) = \frac{x_j}{|x|^{n+1}}, j=1,...,n \), are infinite a.e.
Let $I(x)$ be a constant function on \mathbb{R}^n. We say $K \in H^+_r$, $1 \leq r \leq \infty$, if $K \in H_r$, $TI = 0$, and $\sum_{j=1}^{\infty} s(2^{-j}) < +\infty$.

THEOREM: Suppose $K \in H^+_r$, $1 < r \leq \infty$, and $f \in \text{BMO}$. Either Tf fails to exist almost everywhere or $Tf \in \text{BMO}$ and

$$\|Tf\|_{\text{BMO}} \leq C\|f\|_{\text{BMO}}.$$

The constant C is independent of f.

Given $x \in \mathbb{R}^n$ and $\delta > 0$, set $B(x, \delta) = \{y \in \mathbb{R}^n : |x - y| \leq \delta \}$. For $B = B(x, \delta)$, let $f_B = \frac{1}{|B|} \int_B f(y)\mathrm{d}y$. The proof of the theorem is based on the following lemma. (See [4].)

LEMMA: Let $1 \leq p < \infty$. There is a constant C depending on n and p so that for $f \in \text{BMO}$, $B = B(x, \delta)$, and $k \geq 1$,

$$\left(\int_{B(x, 2^k \delta)} |f(y) - f_B|^p \mathrm{d}y \right)^{1/p} \leq Ck(2^k \delta)^n/p\|f\|_{\text{BMO}}.$$

We now sketch a proof of the theorem. (See [6,4].) Suppose $E = \{x \in \mathbb{R}^n : Tf(x) \text{ exists} \}$ has positive measure. Let x_0 be a point of density of E and $\delta > 0$. Set $B = B(x_0, \delta)$ and $\bar{B} = B(x_0, 4\delta)$. Write $f(x) = f_B + \left[f(x) - f_B \right] \chi_B(x) + \left[f(x) - f_B \right] \chi_{\mathbb{R}^n \setminus B}(x) = f_B + g_B(x) + h_B(x)$. Since f_B is constant, $Tf_B = 0$. By the lemma, $g_B \in L^2$ and

$$\int_{\bar{B}} |Tg_B(y)|\mathrm{d}y \leq |\bar{B}|^{1/2} \|Tg_B\|_2 \leq C_1 |\bar{B}|^{1/2} \|g_B\|_2 \leq C_2 |\bar{B}| \|f\|_{\text{BMO}}.$$

It follows that Tg_B exists a.e. so that Tf exists at almost every point such that
Since x_0 is a point of density of E and Tg_B exists a.e., there is a point $y_0 \in B(x_0,\delta)$ such that $Th_B(y_0) = Tf(y_0) - Tg_B(y_0)$ exists. Suppose $x \in B$. Set $A_j = \{ z \in \mathbb{R}^n : 2^j \delta < |x_0 - z| \leq 2^{j+1} \delta \}$. By the lemma, since $K \in H^+_\tau$ and $|x-y_0| \leq 2\delta$,

$$\|T_B(x) - Th_B(y_0)\| \leq \int |K(x-z) - K(y_0-z)| |h_B(z)| \, dz$$

$$= \sum_{j=2}^{\infty} \int_{A_j} |K(x-z) - K(y_0-z)| |f(z) - f_B| \, dz$$

$$\leq \sum_{j=2}^{\infty} \left(\int_{A_j} |K(x-z) - K(y_0-z)|^{1/r} \, dz \right)^{1/r'} \left(\int_{B(x_0,2j+1\delta)} |f(z) - f_B|^{r'} \, dz \right)^{1/r'}$$

$$\leq C \sum_{j=2}^{\infty} s \left(\frac{|x-y_0|}{2^j \delta} \right)^{2j+1} j^{(2j+1)\delta/n} \|f\|_{\text{BMO}}$$

$$\leq C \sum_{j=1}^{\infty} 2^{-j} j\|f\|_{\text{BMO}} = C'\|f\|_{\text{BMO}}.$$

As a consequence of (3), Th_B exists a.e. in B, which implies Tf exists a.e. in B. By considering only $B(x_0,\delta)$ with δ a positive integer, it follows that Tf exists a.e. in \mathbb{R}^n.

To show $\|Tf\|_{\text{BMO}} \leq C\|f\|_{\text{BMO}}$, fix $B = B(x,\delta)$ and choose y_0 as before. By (2) and (3),

$$\frac{1}{|B|} \int_B |Tf(y) - Th_B(y_0)| \, dy \leq \frac{1}{|B|} \int_B |Tg_B(y)| \, dy + \frac{1}{|B|} \int_B |Th_B(y) - Th_B(y_0)| \, dy$$

$$\leq C \|f\|_{\text{BMO}}.$$

Since B was arbitrary, we see that $Tf \in \text{BMO}$ and $\|Tf\|_{\text{BMO}} \leq C\|f\|_{\text{BMO}}$.

Let $\sum_{n=1}^{\infty} = \{x \in \mathbb{R}^n : |x| = 1\}$ and ρ be a rotation of $\sum_{n=1}^{\infty}$ with
$$|\rho| = \sup_{x \in \sum_{n=1}^{\infty}} |x-\rho x|.$$ Suppose $K(x) = \frac{\Omega(x)}{|x|^n}$, where Ω is homogeneous of degree 0 and
$$\int_{\sum_{n=1}^{\infty}} \Omega(x) d\sigma(x) = 0.$$ Let ω_τ be the L^τ modulus of continuity of Ω on $\sum_{n=1}^{\infty}$, $\omega_\tau(x) = \sup_{|y-x| \leq \delta} \frac{|\Omega(x)-\Omega(y)|^{1/\tau}}{\delta^{1/\tau}}$. (For $\tau = \infty$, use the L^∞ norm). Then $K \in H_{-\infty}^\tau$ if
$$\int_0^1 \omega_\tau(\delta) d\delta < + \infty.$$ (This is a slightly stronger condition than the L^τ-Dini condition, which implies $K \in H_{-\infty}^\tau$.) In particular, if $\Omega \in \text{Lip}(\alpha)$, $\alpha > 0$,
$$|\Omega(x)-\Omega(y)| \leq C |x-y|^\alpha,$$
then $\Omega \in H_{-\infty}^\tau$. Thus, the Riesz transforms satisfy the theorem.

REFERENCES

5. X. Shi and A. Torchinsky (oral communication)

Department of Mathematical Sciences
New Mexico State University
Las Cruces NM 88003 USA