AN APPROXIMATION THEOREM FOR ORDER BOUNDED OPERATORS

Gerard J.H.M. Buskes

The object of this paper is to outline some recent work with P.G. Dodds, B. de Pagter and A.R. Schep [1]. In the following E and F will be Riesz spaces and T will be a positive operator from E to F. For proofs which are not given the reader is referred to a forthcoming paper [1]. Our aim is to approximate in a purely order theoretic way any operator in the order interval $[0,T]$ of the space of all regular operators between E and F with operators of a particularly simple kind with respect to T. For the sake of convenience we will assume that $E = C(K)$ (except in corollary 7), that the normal integrals on F, denoted F^-, separate the points of F and that F is Dedekind complete. The latter has as a consequence that the space of all order bounded (= regular) operators from E to F, denoted by $L_b(E,F)$ is itself a Dedekind complete Riesz space.

Every element $f \in C(K)$ determines a multiplication operator $g \to gf$ on $C(K)$, which is called a multiplier. Abstractly such operators $\sigma : C(K) \to C(K)$ are defined by the conditions that $|\sigma(g)| \wedge |h| = 0$ whenever $|g| \wedge |h| = 0$ and that σ is order bounded.

We are interested in the set of all operators R in $[0,T]$ for which there exist $n \in \mathbb{N}$, multipliers $\sigma_1, \ldots, \sigma_n$ on $C(K)$ and order projections π_1, \ldots, π_n on F such that $R = \sum_{i=1}^n \pi_i T \sigma_i$. The set of all those operators will be labelled $\mathcal{L}(T)$. The elements of $\mathcal{L}(T)$ serve as approximating operators in $[0,T]$.

The following terminology is needed. If L is a Riesz space and
φ is an order bounded functional on L, then \(\rho_\varphi(f) = |\varphi(|f|)| (f \in L) \) defines a seminorm on L. For a set of order bounded functionals \(M \) on L, we define \(|\sigma|(L,M) \) to be the locally convex topology generated by the set of all seminorms \(\rho_\varphi \) with \(\varphi \in M \). Every \(0 \leq \varphi \in F_n^{-} \) and every \(0 \leq x \in E \) determines an element \(\phi_{\varphi,x} \) in the space of normal integrals on \(L_b(E,F) \) by \(\phi_{\varphi,x}(S) = \langle SX, \varphi \rangle \) for all \(S \in L_b(E,F) \).

Taking \(F = \{ \phi_{\varphi,x} | 0 \leq \varphi \in F_n^{-}, 0 \leq x \in E \} \), we have all the notation to state lemma 1.

Lemma 1. \(\ell(T) \) is \(|\sigma|(L_b(E,F),F)\)-dense in \([0,T]\).

The proof of lemma 1 is largely based on a convenient formula for the infimum of two positive operators from E to F. Indeed, for every \(0 \leq S, R \in L_b(E,F), 0 \leq x \in E \) and \(0 \leq \varphi \in F_n^{-} \) we have \(\langle (R \wedge S)(x), \varphi \rangle = \inf \sum \langle \pi_j \pi_i, \varphi \rangle \wedge \langle \pi_j R \pi_i, \varphi \rangle \), where the infimum is taken over all finite subsets \(\{ x_1, ..., x_n \} \subset E^+ \) with \(\sum_i x_i = x \) and all finite subsets of mutually disjoint band projections \(\{ \pi_1, ..., \pi_m \} \) on F with \(\sum_j \pi_j = Id_F \).

However, we have in mind a more intrinsic way of characterizing \([0,T]\) in terms of \(\ell(T) \). For this purpose we need more structural information about \(\ell(T) \). By considering the tensor product of the band projections on F with the multipliers on E we obtain the following result.

Lemma 2. \(\ell(T) \) is a sublattice of \([0,T]\).

If L is a Riesz space and \(K \) is a subset of L, \(IK \) is defined to be the set of all \(f \in L \) for which there exists a subset \(\{ f_\tau \} \subset K \) with \(f_\tau \uparrow f \). \(DK \) is defined by replacing \(\uparrow \) in the preceding sentence by \(\downarrow \) (and \(IK \) by \(DK \)). The following up-down theorem by D.H. Fremlin suits the situation (see [3]).
Theorem 3. If L is a Dedekind complete Riesz space, if M is a solid subspace of the normal integrals on L which separates the points of L and if K is a sublattice of L, then the closure of K for $|\sigma(L,M)$ is VIDIK.

We employ theorem 3 by taking $L = L_b(E,F)$, $M = F$, $K = \ell(T)$. Lemma 1, lemma 2 and some routine inspections of the situation, together with theorem 3 now yield:

Theorem 4. $\text{VIDI} \ell(T) = [0,T]$.

Because the characterization in theorem 4 is intrinsic, we can now derive a much stronger approximation theorem, (due to Kalton and Saab [4]).

Theorem 5. If ρ is an order continuous Riesz seminorm on the principal ideal generated by T in $L_b(E,F)$, if $S \in [0,T]$ and $\epsilon > 0$, then there exists $S' \in \ell(T)$ with $\rho(S - S') < \epsilon$.

Apart from being interesting in their own right, these theorems have nice consequences. The main reason for this is the preservation of certain properties of T in $\ell(T)$. For instance, every element of $\ell(T)$ is compact if T is compact. A straightforward application is the following majorization result by Dodds and Fremlin (see [2]).

Corollary 6. If F is an AL-space and $E = C(K)$, if $0 \leq S \leq T$ are operators from E to F, and T is a compact operator, then S is a compact operator.

To discuss another application we have to abandon the assumption $E = C(K)$. Instead, we assume that E is a Banach lattice with quasi-interior point, i.e. with an element $u \in E$ such that E is norm dense
in the principal ideal generated by \(u \). We borrow the abstract definition for the multipliers from the \(C(K) \) situation, i.e. the multipliers are the order bounded operators \(\sigma : E \to E \) with \(|\sigma(g)| \wedge |h| = 0 \) as soon as \(|g| \wedge |h| = 0 \). The multipliers form a Riesz space under pointwise operations and, in fact, this Riesz space is Riesz isomorphic to a \(C(K) \)-space. Using the same techniques, the statements in theorem 4 and theorem 5 remain valid. The latter will be used in the proof of our next corollary. (Again due to Kalton and Saab [4]).

Corollary 7. If \(E \) and \(F \) are Banach lattices and \(F \) has order continuous norm (so no restrictions on \(E \) at all), if \(0 \leq S \leq T \) are operators from \(E \) to \(F \) and \(T \) is a Dunford-Pettis operator, then \(S \) is a Dunford-Pettis operator.

We sketch a proof of this corollary. To prove that \(S \) is a Dunford-Pettis operator we have to show that for every sequence \((a_n)_{n \in \mathbb{N}} \) of elements of \(E \), which converges weakly to zero, \(\|S(a_n)\| \to 0 \). Suppose \(a_n \to 0 \) weakly. By taking \(y = \sum_{n=0}^{\infty} 2^{-n} |a_n| \) we may assume that \(E \) has a quasi-interior point, namely \(y \). Let \(A \) be the solid hull of \(\{a_n \mid n \in \mathbb{N}\} \) and \(B = \{\varphi \in F^* \mid \|\varphi\| \leq 1\} \). Define for every \(R \) in the principal ideal generated by \(T \) in \(L_b(E,F) \), \(\rho(R) = \sup\{|(Ra,\varphi)| \mid a \in A, \varphi \in B\} \). It can be shown that \(\rho \) is an order continuous Riesz seminorm on the principal ideal generated by \(T \) in \(L_b(E,F) \). Therefore, there exists by the remarks preceding corollary 7 an element \(S' \) in \(\ell(T) \) with \(\rho(S - S') \leq \varepsilon \). As \(S' \) is a Dunford-Pettis operator it easily follows that \(\|Sa_n\| \to 0 \).

References

theorems in the centre of $L_b(E,F)$.

School of Mathematical Sciences
Flinders University of South Australia
Bedford Park. S.A. 5042
AUSTRALIA.