SOME THEOREMS ON ORLICZ-SOBOLEV SPACES,
AND AN APPLICATION TO NEMITSKY OPERATORS

Grahame Hardy

1. INTRODUCTION

We are concerned here with the problem of extending, to Orlicz-Sobolev
spaces, certain theorems of Marcus and Mizel on Nemitsky operators on
Sobolev spaces. (See [5].)

Marcus and Mizel's proofs rely upon, in particular,

(i) Gagliardo's characterisation of the Sobolev space \(W_{1,p} \) in
terms of absolute continuity; and

(ii) bounds and limits of difference quotients in Sobolev spaces.

We shall give suitable extensions of (i) and (ii) to
Orlicz-Sobolev
spaces in §§ (2) and (3) below, which enables us to give an extension
of the theorems of Marcus and Mizel. (See § 4.)

2. ORLICZ-SOBOLEV SPACES AND THE SPACES \(A(\Omega) \)

Throughout this paper, \(\Omega \) denotes a domain in \(\mathbb{R}^n \).

Since all the definitions of both Orlicz and Orlicz-Sobolev spaces
which occur in the statements of our theorems can be found in [1], we
shall not repeat them here. For the spaces \(A(\Omega) \) (i.e., Beppo Levi
spaces), we shall follow [5]. (With a minor difference in notation,
essentially that, in denoting certain equivalence classes, we use "-" instead of a dash, to avoid an obvious source of confusion.)
Thus \(\mathcal{A}(\Omega) \) denotes the class of real measurable functions \(u \) on \(\Omega \) such that, for almost every line \(\tau \) parallel to any co-ordinate axis, \(u \) is locally absolutely continuous on \(\tau \cap \Omega \). \(\mathcal{A}(\Omega) \) denotes the class of functions \(u \) such that \(u \) coincides almost everywhere in \(\Omega \) with a function \(\tilde{u} \) in \(\mathcal{A}(\Omega) \). For \(u \in \mathcal{A}(\Omega) \), \(\tilde{D}_j u \) (or \(\tilde{D}_x^j u \)), the strong approximate derivative of \(u \) with respect to \(x_j \), denotes any member of the equivalence class of functions measurable on \(\Omega \) which contains the classical partial derivative \(D_j u \). We shall use \(\partial_j u \) or \(\partial_x^j u \) to denote a weak derivative. Our extension of Gagliardo's theorem is:

THEOREM 1
Let \(M \) be an \(N \)-function, and suppose \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with the cone property. Then a function \(u \) defined on \(\Omega \) belongs to \(W^1 L_M(\Omega) \) if and only if

(a) \(u \in \mathcal{A}(\Omega) \);

(b) \(\tilde{D}_j u \in L_M(\Omega), \quad j = 1, \ldots, n. \)

Moreover, if \(u \in W^1 L_M(\Omega) \), then \(\tilde{D}_j u = \partial_j u \) almost everywhere in \(\Omega \).

Using Theorem 1 (instead of Gagliardo's Theorem), we obtain the following version of a chain rule due to Serrin.

THEOREM 2
Let \(f: \mathbb{R} \to \mathbb{R} \) be locally absolutely continuous, let \(M \) be an \(N \)-function and suppose \(u \in W^{1,1}_1(\Omega) \). Then \(f \circ u \in W^1 L_M(\Omega) \) if and only if

(i) \((f \circ u) \partial_j u \in L_M(\Omega), \quad j = 1, \ldots, n, \)

where we make the following convention:

(*) the product is zero if the term on the right is zero.
Moreover, if (i) holds,

\[\partial_j (f \circ u) = (f' \circ u) \partial_j u, \quad j = 1, \ldots, n, \text{almost everywhere in } \Omega. \]

3. DIFFERENCE QUOTIENTS IN ORLICZ-SOBOLEV SPACES

Definition. For \(u : \Omega \to \mathbb{R}, e_j, 1 \leq j \leq n \), the standard basis for \(\mathbb{R}^n \), and \(x \in \mathbb{R}^n \), we define the difference quotient in the direction \(e_j \) by

\[\delta^j_h u(x) = \frac{u(x+he_j) - u(x)}{h}, \quad h \neq 0, \text{ whenever } x \text{ and } x + he_j \in \Omega. \]

Using arguments similar to those used to establish the analogous results for Sobolev spaces, (see [2]), we can prove the following:

THEOREM 3. Suppose \(\Omega \) is a bounded, and that \(\Omega' \) is an open set such that \(\Omega' \subset \subset \Omega \). Then if \(0 < |h| < \text{dist}(\Omega', \text{bdry } \Omega) \), and if \(u \in W^{m+1}_M(\Omega) \) for some \(m \geq 1 \),

\[\| \delta^j_h u \|_{m-1, M, \Omega'} \leq \| u \|_{m, M, \Omega}. \]

Further, if there exists a number \(C \) such that \(\| \delta^j_h u \|_{m, M, \Omega'} \leq C, \quad 1 \leq j \leq n, \)

for every open \(\Omega' \subset \subset \Omega \) and all \(h \) sufficiently small, then \(u \in W^{m+1}_L(M, \Omega) \) and \(\| \delta^j u \|_{m, M, \Omega} \leq C, \quad 1 \leq j \leq n \).

4. NEMITSKY OPERATORS

Definition. A function \(g : \Omega \times \mathbb{R}^m \to \mathbb{R} \) is said to be a generalised locally absolutely continuous (briefly g.l.a.c.) Caratheodory function if:

(i) There exists a null subset \(N \) of \(\Omega \) such that for every fixed \(x \in \Omega \setminus N \) we have
203

(a) \(g(x, \cdot) \) is separately continuous in \(\mathbb{R}^m \);

(b) for every line \(\tau \) parallel to one of the axes in \(\mathbb{R}^m \),
\[g(x, \cdot) \big|_\tau \text{ is locally absolutely continuous.} \]

(ii) For each fixed \(t \in \mathbb{R}^m \), \(g(\cdot, t) \in \tilde{A}(\Omega) \).

The Nemitsky operator \(G \) is then defined on functions \(u : \Omega \to \mathbb{R}^m \)
by \((Gu)(x) = g(x, u(x)) \).

Our extension of Marcus and Mizel's theorem (including a corollary)
is then:

THEOREM 4. \(\) Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) having the cone property,
and let \(g \) be a g.l.a.c. Caratheodory function on \(\Omega \times \mathbb{R}^m \). Let \(P, Q_k \) and \(Q_k^+, k = 1, \ldots, m \), be \(N \)-functions having the following properties:

(i) \(P \) and \(Q_k, k = 1, \ldots, m \), satisfy the \(\Delta_2 \) condition;

(ii) \(P \leq Q_k, k = 1, \ldots, m \);

(iii) there exist complementary \(N \)-functions \(R_k \) and \(\tilde{R}_k \) such that the inequalities
\[R_k(s) \leq P^{-1}[Q_k(a_k s)] \]
and
\[\tilde{R}_k(s) \leq P^{-1}[Q_k^+(\beta_k s)] \]
are satisfied for \(s \geq \alpha_k \), where \(a_k, \beta_k, \alpha_k, \beta_k, \gamma_k, k = 1, \ldots, m \), are constants.

Suppose \(a, b, a_k, \beta_k, \gamma_k \) are functions such that for every fixed \(t \in \mathbb{R}^m \)

(iv) \[|\tilde{D}_{x_i} g(x, t)| \leq a(x) + b(t) \text{ a.e. in } \Omega, i = 1, \ldots, n; \text{ and} \]
the inequality
holds at every point \((x,t) \in (\Omega \setminus N) \times \mathbb{R}^m\) at which the derivative exists in the classical sense. (Here \(N\) is the null set of the definition above.)

Furthermore, \(a, b, a_k\) and \(b_{k,j}\) have the properties (vi) - (x) listed below:

(vi) \(0 \leq a \in L^p(\Omega)\);

(vii) \(b\) is non-negative and separately continuous in \(\mathbb{R}^m\);

(viii) \(0 \leq a_k \in L^q_k(\Omega), \ k = 1, \ldots, m;\)

(ix) \(0 \leq b_{k,j} \) is an extended real valued Borel function on \(\mathbb{R}, \ k, j = 1, \ldots, m;\)

(x) \(b_{k,k} \in L^1_{\text{loc}}(\mathbb{R}), \ k = 1, \ldots, m.\)

Let \(u_k \in W^{1,p}_k(\Omega), \ k = 1, \ldots, m, \) let \(u = (u_1, \ldots, u_m)\), and suppose that

(xii) \(bou \in L^p(\Omega)\);

(xiii) \(b_{k,j}ou_k \in L^p_{\text{loc}}(\Omega)\) \(k, j = 1, \ldots, m, k \neq j;\)

and, with the convention (*),

(xiii) \([b_{k,k}ou_k] \partial_i u_k \in L^p(\Omega), \ k = 1, \ldots, m, i = 1, \ldots, n.\)

Then \(Gu\) belongs to \(W^{1,p}(\Omega)\), and, with the convention (*),

\[
|\partial_i (Gu(x))| \leq a(x) + (bou)(x) + \\
+ \sum_{k=1}^m \left[a_k(x) + \sum_{j=1}^m (b_{k,j}ou_j)(x) |\partial_i u_k(x)| \right],
\]

almost everywhere in \(\Omega, i = 1, \ldots, n.\)

NOTE. Families of N-functions satisfying (i), (ii), and (iii) can be constructed from standard N-functions (such as those listed in [4]), using the following:
Proposition. Let P and R be N-functions satisfying the Δ_2 condition, and let $Q = P \circ R$, $Q^r = P \circ \tilde{R}$. Then Q and Q^r are N-functions having the properties:

(i) Q satisfies the Δ_2 condition;
(ii) $P < Q$;
(iii) $R = P^{-1} \circ Q$, $\tilde{R} = P^{-1} \circ Q^r$.

REFERENCES

School of External Studies
University of Queensland
St Lucia QLD 4067
AUSTRALIA